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Summary and aim of the package

■ 1 Summary and aim of the package

• 1.1 The Reacnorm package
The aim of the Reacnorm is to provide tools to quantity the variation in reaction norms, when studying
the phenotypic plasticity of a trait. It provides away to perform a variance decomposition of reaction
norm, distinguishing the variation due to the average shape of reaction norm on the one hand; and
the genetic variation on the other hand. For more information, see de Villemereuil & Chevin (2025).

The source code of this vignette can be found at the followingGithub repository devillemereuil/Vi-
gnetteReacnorm. This vignette is distributed under the Creative Commons CC0 Licence.

• 1.2 The dragon dataset
In this vignette, we will be using the dragon datasets that are shipped with the Reacnorm package: the
dragon_discrete and dragon_continuous datasets. They should be available in R as soon as the package
Reacnorm has been loaded. These data were, of course, simulated for the sake of this tutorial.

• 1.3 Packages and seed used in this tutorial
The tutorial assumes that the tidyversemeta-package (containing e.g. tidyr, dplyr, purrr, forcats and
ggplot2, that we’ll be using) has been loaded. To complement ggplot2, and be able to compose plots,
we will use the patchwork package. For the statistical modelling, we will use the Bayesian package
brms. There are two reasons for this choice. First, by using a Bayesianmethod, we can easily compute
the uncertainty surrounding our Reacnorm estimates, by computing a value for each iteration of the
MCMC chain. Second, brms is a very versatile, and thus we can use it to implement all of the models
(including non-linear models) we will be using in this tutorial. Finally, to work with the MCMC
output of brms, we will be using the packages posterior and bayesplot. The tutorial assumes that all
of those packages are loaded.

Another thing is that we will set a “seed” for the whole tutorial. This seed will allow for the
reproducibility of the analysis across computers. For this tutorial, the (lucky!) seed was set to 777:

seed <- 777
set.seed(seed)

• 1.4 About Bayesian statistics and brms

We will be using Bayesian statistics in the course of this tutorial. Although this might generate
friction for users not already used to Bayesian statistics, this choice was motivated by the following
reasons. First, it allows for using the exact same package and function throughout, using the very
flexible brms package, whether we want to fit linear or non-linear models. Second, using posterior
distribution, it is relatively easy and straightforward to compute the uncertainty around derived pa-
rameters of the variance decomposition offered by the Reacnorm package, whereas computing such
uncertainty in a frequentist framework would require more work (or bootstrapping). Third, it fol-
lows a principle of “maximal complexity” in that sequences using point estimates, rather than pos-
terior distributions, in this tutorial can be transposed relatively easily to a frequentist perspective
(although without the uncertainty, see above).
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Overview of the theory

■ 2 Overview of the theory
Coming soon, a summary of the theoretical bases of the Reacnorm package. In the meantime, users
can refer to the companion paper of the package (de Villemereuil & Chevin 2025).

■ 3 Studying reaction norms in a discretised
environment

• 3.1 A fully quadratic reaction norm

‣ 3.1.1 Overview of the data on aggressiveness
Let’s start by looking at the data, shipped directly when loading the Reacnorm package:

head(dragon_discrete)

Name_Env Temp Individual Aggressiveness Performance
1 Env_01 -2 Ind_01 -2.1600 -0.0234
2 Env_01 -2 Ind_02 -3.0300 0.0564
3 Env_01 -2 Ind_03 0.0278 0.0565
4 Env_01 -2 Ind_04 -1.3200 0.0744
5 Env_01 -2 Ind_05 -3.6800 0.0515
6 Env_01 -2 Ind_06 -2.7200 -0.0668

Another option is to look at the description of the dataset using ?dragon_discrete. The dataset con-
tains measures of phenotypic assays collected on dragons¹ kept in a (gigantic) thermostatic cage.
Aggressiveness is measured using a complex, continuous index based on their behaviour when ex-
posed to an armoured knight provoking them.
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Figure 1: Dragons aggressiveness according to the experimental test temperature

¹For readers who have kept their childlike spirit and still believe in dragons, I am sorry to say the data have been
simulated.
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3.1 A fully quadratic reaction norm

We can have a look at how aggressiveness depends on the experimental temperature:

ggplot(dragon_discrete) +
geom_line(aes(x = Env, y = Aggressiveness, group = Individual, colour = Individual)) +
geom_point(aes(x = Env, y = Aggressiveness, group = Individual, colour = Individual)) +
theme(legend.position = "none") +
xlab("Temperature") + ylab("Aggressiveness")

Figure 1 shows the resulting graph, in which we can see that a quadratic curve will probably be a
good fit for the reaction norm curve. So, this is what we’ll use.

In order to compute a quadratic reaction norm, we have to compute the (mean-centered) squared
values of the environment. To be sure to remember that we modified the original dragon_discrete,
we will create a new dataset (say tbl_dragon_ds)

tbl_dragon_ds <-
dragon_discrete |>
mutate(Env_Sq = (Env - mean(Env))^2)

The mean-centering is necessary to have squared values that are not correlated with the direct en-
vironmental values².

‣ 3.1.2 Fitting a quadratic reaction norm to the data
Running the model We will be using the brms package to study (see subsection 1.4 for more
information) to study this quadratic reaction norm. As a reminder, we will run the model for 3000
iterations in total, discarding the first 1000 iterations considered as lost during the warming-up.
Since the NUTS algorithm is particularly efficient to reduce auto-correlation, we will conserve all
consecutive iterations:

# Number of independent chains
n_chains <- 4
# Total number of iterations
n_iter <- 3000
# Number of iterations that will be discarded for the warm-up
n_warm <- 1000
# Thinning interval
n_thin <- 1

To study a quadratic reaction norm, wewill use a linearmodel³, with two predictors: the temperature
and the squared-value of the temperature. We also need to specify to the model that each values
of the three parameters (intercept, slope, second-order component) vary between individuals. This
will be done with brms syntax to specify random effects, which is close to e.g. the lme4 package:

form_quad <- brmsformula(Aggressiveness ~ Temp + Temp_Sq +
(1 + Temp + Temp_Sq | Individual))

The function brmsformula() generates a formula to pass on the function actually running the model,
which is named brm():

model_agr <-
brm(formula = form_quad,

²Although it is a bit useless here, because the mean is already 0, but better be safe than sorry.
³Yes, the model itself is linear, even though the reaction norm is quadratic, because “linear” here must be understood

as “linear in its parameters”, which is the case of polynomial functions.
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3.1 A fully quadratic reaction norm

data = tbl_dragon_ds,
save_pars = save_pars(group = FALSE),
chains = n_chains,
cores = n_chains,
seed = seed,
iter = n_iter,
warmup = n_warm,
thin = n_thin)

To explain what is happening here: we ask brm() to run a model using the formula form_rn, collecting
data from the tbl_dragon_ds data.frame. We provide the characteristics of the chains we want brms
to run. Note that we provide the seed to the function, so that the output is reproducible. Finally, the
save_pars = save_pars(group = FALSE) tells brms that we do not want the random effects predictors to
be saved in the model output, as they take a lot of space and are of no use for us in this tutorial.

Checking the model We can have a look at the output of the model using the summary() function:

summary(model_agr)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Aggressiveness ~ Temp + Temp_Sq + (1 + Temp + Temp_Sq | Individual)
Data: tbl_dragon_ds (Number of observations: 1000)
Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;

total post-warmup draws = 8000

Multilevel Hyperparameters:
~Individual (Number of levels: 100)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
sd(Intercept) 0.28 0.04 0.21 0.35 1.00 4031
sd(Temp) 0.42 0.03 0.36 0.49 1.00 2350
sd(Temp_Sq) 0.18 0.02 0.14 0.22 1.00 2390
cor(Intercept,Temp) -0.21 0.13 -0.46 0.05 1.00 751
cor(Intercept,Temp_Sq) -0.04 0.16 -0.34 0.28 1.00 1347
cor(Temp,Temp_Sq) 0.08 0.12 -0.16 0.32 1.00 2662

Tail_ESS
sd(Intercept) 5617
sd(Temp) 4027
sd(Temp_Sq) 4029
cor(Intercept,Temp) 1588
cor(Intercept,Temp_Sq) 2467
cor(Temp,Temp_Sq) 4250

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 1.48 0.04 1.41 1.55 1.00 6669 6685
Temp 0.53 0.04 0.44 0.61 1.00 2196 3530
Temp_Sq -0.49 0.02 -0.53 -0.45 1.00 3527 5341

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.49 0.01 0.46 0.52 1.00 5206 6387
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3.1 A fully quadratic reaction norm

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Beyond the classical values of point estimate, standard error and 95% CI provided for each parameter
of the value, we get values to assess whether the algorithm went well (Vehtari et al. 2021). Notably,
𝑅 tests for convergence (i.e. whether the chains reached stationary state) and should near 1 (recom-
mended values are 𝑅 ≤ 1.01) The Bulk and Tail effective sample sizes (ESS) provide information
regarding whether the chains were long enough to obtain precise estimates or not. Schematically,
the ESS of a chain is the equivalent number of pure Monte Carlo sampling yielding the same amount
of information. In other words, if you had 1000 iterations, but an ESS of 40, it is as if you drew only
40 independent samples from the posterior distribution of the parameter. The reason for this dis-
crepancy comes from the fact that consecutive iterations in the chains are not independent (there is
auto-correlation). While Bulk ESS provides information on how well we sampled around the mean
(so, how well it is estimated), Tail ESS provides information on how well we sampled the tail (so,
howwell the variance is estimated). Both ESS should be above at least 400 for all parameters (Vehtari
et al. 2021).

We can also have a graphical look at the model, to see the traces (values of the parameters along
the iterations, to check for convergence) and posterior distributions of the parameters (see Figure 2):

plot(model_agr)

Figure 2: Plot of the mod_agr model. Parameters starting with “b” are the fixed effects parameters of the
model, and parameters starting with “sd” are the standard deviation of the random effects. The parameter
“sigma” is the residual standard deviation.

To have a better look at how the model fits the data, we can have a look at the average reaction
norm predicted by the model:

tbl_agr_mod <-
tbl_dragon_ds |>
mutate(Predict = predict(model_agr, re_formula = NA) |>

as_tibble()) |>
unpack(Predict) |>
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3.1 A fully quadratic reaction norm

select(Temp,
Predict = Estimate,
Predict_Low = Q2.5,
Predict_Up = Q97.5) |>

summarise(across(starts_with("Predict"), mean),
.by = Temp)

p_rn_agr <-
p_aggr +
geom_ribbon(data = tbl_agr_mod,

mapping = aes(x = Temp, ymin = Predict_Low, ymax = Predict_Up),
alpha = 0.3) +

geom_line(data = tbl_agr_mod,
mapping = aes(x = Temp, y = Predict),
linewidth = 1)
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Figure 3: Aggressiveness individual data, with the average reaction norm predicted by the mod_agr model.

‣ 3.1.3 Decomposing the variance based on point estimates
Getting point estimates In order to perform the variance decomposition using the Reacnorm pack-
age, we need first to extract the point estimates of key parameters in the model. The first thing we
will need are the estimates of the quadratic coefficients of the model (𝜃 in the theoretical overview
above). To do so, we will use the fixef() function:
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3.1 A fully quadratic reaction norm

theta_agr <- fixef(model_agr, robust = TRUE)[ , "Estimate"]
names(theta_agr) <- c("a", "b", "c")
theta_agr

a b c
1.4808551 0.5293001 -0.4903728

Similarly, we can extract the variance-covariance of the fitted random effects:

G_agr <-
VarCorr(model_agr, robust = TRUE)[["Individual"]][["cov"]][ , "Estimate", ]

rownames(G_agr) <- colnames(G_agr) <- names(theta_agr)
G_agr

a b c
a 0.075549554 -0.023922259 -0.002332428
b -0.023922259 0.171736042 0.005871739
c -0.002332428 0.005871739 0.031550777

Note that we used the robust = TRUE argument. This outputs the posterior median, rather than the
more classical posterior mean, as a point estimate. In general, if the posterior distribution is sym-
metrical (see “b” prefixed panels in Figure 2), both point estimates should be comparable. But for
standard-deviations or variances of the random effects, posterior distributions tend to be strongly to
slightly asymmetrical, in which case the posterior median is a better point estimate (Pick et al. 2023).
We thus use robust = TRUE everywhere for consistency. We can also extract the residual variance,
that will be useful to get at the total phenotypic variance contained in the reaction norm:

vr_agr <- VarCorr(model_agr, robust = TRUE)[["residual__"]][["sd"]][ , "Estimate"]^2
vr_agr

[1] 0.2394762

Finally, we will require the uncertainty around the 𝜃 point estimates, i.e. the Smatrix (see theoretical
overview):

S_theta_agr <- vcov(model_agr)
rownames(S_theta_agr) <- colnames(S_theta_agr) <- c("a", "b", "c")
S_theta_agr

a b c
a 0.0013203047 -0.0003068121 -0.0002255506
b -0.0003068121 0.0019102726 0.0000669430
c -0.0002255506 0.0000669430 0.0004393123

Designmatrix The last ingredient we will require to use the Reacnorm package is the design matrix
X is the linear model. Unfortunately, brms objects do not contain such matrix, but we can “recon-
struct” it based on the formula of the model, using the model.matrix() function:

design_mat <- model.matrix(Aggressiveness ~ Temp + Temp_Sq, data = tbl_dragon_ds)
head(design_mat)

(Intercept) Temp Temp_Sq
1 1 -2 4
2 1 -2 4
3 1 -2 4
4 1 -2 4
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3.1 A fully quadratic reaction norm

5 1 -2 4
6 1 -2 4

Getting the variance of average reaction norm and its decomposition In order to obtain
the variance of the average reaction norm (𝑉Plas) and its decomposition, the simplest and quickest
way is to use the rn_phi_decomp() function :

plas_agr <-
rn_phi_decomp(theta = theta_agr, X = design_mat, S = S_theta_agr)

plas_agr

V_Plas Phi_b Phi_c Phi_b_c
1 0.9497063 0.4781417 0.5218583 7.671419e-17

Since the true reaction norm is quadratic, we know that the 𝜑- and 𝜋-decomposition are equal, and
thus, here we have 𝜑𝑏 = 𝜋Sl and 𝜑𝑐 = 𝜋Cv. Hence, the function performing the 𝜋-decomposition
would yield (approximately) the same result. However, because it requires performing numerical
integration, it would take longer (roughly 200 times longer, but still instant here) and be slightly less
exact:

plas_agr_pi <-
rn_pi_decomp(th eta = theta_agr,

V_theta = G_agr,
env = tbl_dragon_ds[["Temp"]] |> unique(),
shape = expression(a + b * x + c * x^2))

plas_agr_pi

V_Plas Pi_Sl Pi_Cv
1 0.9537137 0.478577 0.5205334

There are two reasons forwhy the two functions slightly differ. The first is that, while rn_phi_decomp()
accounts for the uncertainty in 𝜃 using the S matrix, the rn_pi_decomp() function cannot do it. If we
were to not provide Swhen calling rn_phi_decomp(), the results would be even close to rn_pi_decomp():

rn_phi_decomp(theta = theta_agr, X = design_mat)

V_Plas Phi_b Phi_c Phi_b_c
1 0.9537309 0.4793928 0.5206072 7.639302e-17

The second reason is that rn_phi_decomp() uses exact matrix computation, while rn_pi_decomp() is
based on numerical integration, which is (slightly) more approximative. In the end, we can claim that
𝑉Plas = 0.95, with 𝜋Sl = 0.48 and 𝜋Cv = 0.52. The variance𝑉Plas is the variance arising from variation
along the black line in Figure 18. Slightly more of this variance is coming from the curvature of this
line (𝜋Cv = 0.52) than from its average slope (𝜋Sl = 0.48), although these contributions are close to
equality.

Getting the additive genetic variances and their decomposition To compute the additive
genetic variance of the reaction norm (𝑉Add) and its 𝛾-decomposition; the environment-blind addi-
tive genetic variance (𝑉A); and the additive genetic variance arising from plasticity (𝑉A×E) and its
𝜄-decomposition.

gen_agr <-
rn_gen_decomp(theta = theta_agr, G_theta = G_agr, X = design_mat)

gen_agr
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3.1 A fully quadratic reaction norm

V_Add V_A V_AxE Gamma_a Gamma_b Gamma_c Gamma_a_b Gamma_b_c
1 0.4973828 0.1519671 0.3454157 0.1518942 0.5634872 0.2999246 0 0

Gamma_a_c Iota_a Iota_b Iota_c Iota_a_b Iota_a_c Iota_b_c
1 -0.01530597 0 0.8113958 0.1886042 0 0 0

The additive genetic variance of the reaction is thus𝑉Add = 0.50), so roughly twice as low as𝑉Plas. It
is composed for a third by the environment-blind additive genetic variance (𝑉A = 0.15) and for two-
thirds by the additive genetic variance arising from plasticity (𝑉A×E = 0.35). This seems to suggest
that there is a considerable amount of adaptive potential in the plasticity of aggressiveness. Most of
the additive genetic variation in the reaction norm comes from variation in the slopes (𝛾𝑏 = 0.56).
Regarding genetic variation in plasticity itself, it is even more the case that most of the variation
(thus adaptive potential) comes from the slope (𝜄𝑏 = 0.81). Note that, in this simple case, most of
the covariance terms (e.g. 𝛾𝑎,𝑏 = 0 or 𝜄𝑏,𝑐 = 0). For the sake of security, the Reacnorm function will
always yield all components even if they are null. In the rest of this tutorial, we will remove such
null elements by imposing a threshold. For this, we will use the select() function from dplyr:

rn_gen_decomp(theta = theta_agr, G_theta = G_agr, X = design_mat) |>
select(where( \(col_) { abs(mean(col_)) > 10^-5 }) )

V_Add V_A V_AxE Gamma_a Gamma_b Gamma_c Gamma_a_c
1 0.4973828 0.1519671 0.3454157 0.1518942 0.5634872 0.2999246 -0.01530597

Iota_b Iota_c
1 0.8113958 0.1886042

Less cluttered, uh?

Computing the total phenotypic variance and the variance-standardised estimates Now
that we have everything, we can finally compute the total phenotypic variance in the reaction norm:

v_tot_agr <- plas_agr[["V_Plas"]] + gen_agr[["V_Add"]] + vr_agr
v_tot_agr

[1] 1.686565

By dividing𝑉Plas,𝑉Add,𝑉A and𝑉A×E, we can obtain the variance-standardised estimates 𝑃2RN, ℎ
2
RN, ℎ

2

and ℎ2I :

v_tot_agr <- plas_agr[["V_Plas"]] + gen_agr[["V_Add"]] + vr_agr
var_agr <-

c(P2 = plas_agr[["V_Plas"]] / v_tot_agr,
h2_RN = gen_agr[["V_Add"]] / v_tot_agr,
h2 = gen_agr[["V_A"]] / v_tot_agr,
h2_I = gen_agr[["V_AxE"]] / v_tot_agr,
T2 = (plas_agr[["V_Plas"]] + gen_agr[["V_Add"]]) / v_tot_agr)

var_agr

P2 h2_RN h2 h2_I T2
0.56310083 0.29490873 0.09010449 0.20480423 0.85800955

As we mentioned above, the contribution of the variance arising from plasticity due to the average
reaction norm is larger than the contribution of the total additive genetic variance (i.e. 𝑃2RN = 0.56 >
0.29 = ℎ2RN). This also illustrate one of the fundamental results of the companion paper (de Ville-
mereuil & Chevin 2025), i.e. ℎ2RN = ℎ2 + ℎ2I . The reaction norm explains a large part of the total
phenotypic variance (𝑇 2

RN = 0.86).
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3.1 A fully quadratic reaction norm

‣ 3.1.4 Decomposing the variance using the full posterior distribution
Getting the posterior distributions of the parameters Getting estimates from the point esti-
mates of the model is a nice first thing, but it is not the best (Bayesian) way to obtain our variance
decomposition. It is better to compute the above parameter from each iteration of ourmodel’s chains.
In order to do so, we will first have to collect the values of our parameters for each iterations of the
chain. We will do so by setting the argument summary = FALSE in the functions that we used above:

theta_post_agr <- fixef(model_agr, summary = FALSE)
colnames(theta_post_agr) <- c("a", "b", "c")
head(theta_post_agr)

variable
draw a b c

1 1.488025 0.4744503 -0.5005814
2 1.511379 0.4318258 -0.5009057
3 1.521973 0.4587290 -0.4994489
4 1.532942 0.4816476 -0.5069072
5 1.537320 0.4673945 -0.4882447
6 1.501262 0.4572999 -0.5282360

G_post_agr <-
VarCorr(model_agr, summary = FALSE)[["Individual"]][["cov"]] |>
# We use apply() to transform the 3-dimensional array into a list
apply(1, \(mat_) { mat_ }, simplify = FALSE) |>
map( \(mat_) { rownames(mat_) <- colnames(mat_) <- c("a", "b", "c"); return(mat_) })

G_post_agr[[1]]

a b c
a 0.07372066 -0.018482854 0.008082450
b -0.01848285 0.192524723 0.005297588
c 0.00808245 0.005297588 0.028833529

vr_post_agr <-
VarCorr(model_agr, summary = FALSE)[["residual__"]][["sd"]][ , 1]^2

head(vr_post_agr)

1 2 3 4 5 6
0.2574979 0.2319611 0.2425255 0.2417751 0.2719007 0.2292515

To transform those into posterior chains, we will use the package posterior:

post_agr <- as_draws_df(theta_post_agr)
post_agr[["G"]] <- G_post_agr
post_agr[["V_R"]] <- vr_post_agr
post_agr

# A draws_df: 2000 iterations, 4 chains, and 5 variables
a b c

1 1.5 0.47 -0.50
2 1.5 0.43 -0.50
3 1.5 0.46 -0.50
4 1.5 0.48 -0.51
5 1.5 0.47 -0.49
6 1.5 0.46 -0.53
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7 1.5 0.55 -0.49
8 1.5 0.58 -0.47
9 1.5 0.55 -0.47
10 1.5 0.55 -0.53

G V_R
1 0.0737, -0.0185, 0.0081, -0.0185, 0.1925, 0.0053, 0.0081, 0.0053, 0.0288 0.26
2 0.0649, -0.0061, 0.0103, -0.0061, 0.1964, -0.0015, 0.0103, -0.0015, 0.0233 0.23
3 0.0574, 0.0040, 0.0055, 0.0040, 0.2056, 0.0043, 0.0055, 0.0043, 0.0218 0.24
4 0.0811, 0.0080, -0.0034, 0.0080, 0.1684, 0.0061, -0.0034, 0.0061, 0.0306 0.24
5 6.7e-02, -8.2e-05, 4.7e-03, -8.2e-05, 1.6e-01, 1.5e-02, 4.7e-03, 1.5e-02, 2.5e-02 0.27
6 0.0698, -0.00548, -0.00811, -0.00548, 0.186, -0.00077, -0.00811, -0.00077, 0.0296 0.23
7 0.0625, -0.0058, 0.0085, -0.0058, 0.1668, 0.0107, 0.0085, 0.0107, 0.0419 0.24
8 0.0636, -0.0196, 0.0049, -0.0196, 0.2080, 0.0071, 0.0049, 0.0071, 0.0331 0.25
9 0.06724, -0.00861, -0.00063, -0.00861, 0.185, 0.011, -0.00063, 0.01109, 0.03672 0.22
10 0.0907, -0.0192, 0.0024, -0.0192, 0.2508, 0.0134, 0.0024, 0.0134, 0.0387 0.25
# ... with 7990 more draws
# ... hidden reserved variables {'.chain', '.iteration', '.draw'}

We can agree that this is not the best output format for the G-matrix…

Subsetting the parameters As we can see from the output above, we have 8000 iterations. We
could them all, but for the sake of computation time for this tutorial, we will subset to only 1000
iterations of the chains. To do so, we will again use the posterior package to “thin” the chains so
that we end up with 1000 iterations :

post_agr <- thin_draws(post_agr, thin = nrow(theta_post_agr) / 1000)

In order to be able to re-transform the future data.frames that we will generate, we will keep the
“meta-information” that the posterior package keeps at supplementary columns starting with a dot
(.chain, .iteration, .draw):

post_agr_info <- select(post_agr, starts_with("."))

Getting the variance of average reaction norm and its decomposition To use the full pos-
terior distribution of the parameters, we need to apply the rn_phi_decomp() to each iteration of the
chains. To do so, we will use apply():

post_plas_agr <-
post_agr |>
select(a, b, c) |>
apply(1, \(th_) rn_phi_decomp(theta = th_, X = design_mat, S = S_theta_agr)) |>
# Collect the output of apply() into a data.frame
bind_rows() |>
select(where( \(col_) { abs(mean(col_)) > 10^-5 })) |>
# Transform this into a "draws" object using posterior package
cbind(post_agr_info) |>
as_draws_df()

summarise_draws(post_plas_agr)

# A tibble: 3 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Plas 0.957 0.957 0.0834 0.0850 0.831 1.09 1.00 1012. 908.
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2 Phi_b 0.480 0.478 0.0485 0.0481 0.405 0.557 0.999 1050. 933.
3 Phi_c 0.520 0.522 0.0485 0.0481 0.443 0.595 0.999 1050. 933.

The nice thing with the way we re-created a “draws” object from posterior is that we can compute
diagnostic values of our parameters (see columns rhat, ess_bulk and ess_tail). The values for 𝑉Plas
is slightly larger than when we used the point estimates, because by averaging over the posterior
distribution, due to the averaging over the posterior distribution⁴. This time, we also obtain infor-
mation about uncertainty in the estimates, as well as their 95% credible interval. We can also plot
graphics of the trace of these derived parameters, as well as their full posterior distribution (see
Figure 5) using the bayesplot package :

mcmc_trace(post_gen_agr)
mcmc_areas(post_gen_agr,

regex_pars = "^V",
prob = 0.95,
area_method = "scaled height") /

mcmc_areas(post_gen_agr,
regex_pars = "^[^V]", # = Not starting with V
prob = 0.95,
area_method = "scaled height")

Note that we separated⁵ the plot into the actual variance on the one hand, and the 𝜋-decomposition⁶
on the other hand.

Getting the additive genetic variances and their decomposition Again, to compute the ad-
ditive genetic variances and their decomposition, we again need to execute the same function over
all iterations. But this time, since we will need to iterate over the arguments theta (𝜃 ) and G_theta
(G𝜃 ) of rn_gen_decomp(), we need to be able to use several columns at once. To do so, we will first
prepare a new column for 𝜃 in our posterior draws:

post_agr[["theta"]] <-
post_agr |>
select(a:c) |>
apply(1, \(vec_) { vec_ }, simplify = FALSE)

Now, we can use the function map2() from the purrr package from the tidyverse, to apply rn_gen_decomp()
to both columns at once:

post_gen_agr <-
map2(post_agr[["theta"]], post_agr[["G"]],
\(th_, G_) { rn_gen_decomp(theta = th_,

G_theta = G_,
X = design_mat |> unique()) },

.progress = TRUE) |> # This makes map2() prints a nice progress bar
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>

⁴Briefly, the issue is that 𝑉Plas is a variance over the fixed effects estimates, so by averaging over the posterior dis-
tribution, part of the uncertainty in these fixed effects estimates is “absorbed” into 𝑉Plas. This time, it is not possible to
simply use the S variance-covariance matrix correction, because the influence of the prior distribution is such that we
are not sure to be over-correcting or not.

⁵Yes, that is the role of / between the two calls to mcmc_areas(), a syntax provided by the awesome patchwork package
to combine plots!

⁶Yes, here we used rn_phi_decomp() and Phi is printed on the plot, but remember that since the reaction norm is fully
quadratic, we have 𝜋Sl = 𝜑𝑏 and 𝜋Cv = 𝜑𝑐 .
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Figure 4: Posterior distribution of the variance decomposition of the reaction norm of aggressiveness, based
on a quadratic model.

cbind(post_agr_info) |>
as_draws_df()

summarise_draws(post_gen_agr)

# A tibble: 9 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Add 0.502 0.500 0.0556 0.0528 0.411 0.599 0.999 933. 1067.
2 V_A 0.153 0.150 0.0257 0.0248 0.116 0.200 1.00 765. 677.
3 V_AxE 0.349 0.346 0.0466 0.0463 0.275 0.427 0.998 897. 1033.
4 Gamma_a 0.156 0.155 0.0383 0.0417 0.100 0.222 0.999 1037. 1035.
5 Gamma_b 0.564 0.564 0.0519 0.0551 0.482 0.647 1.00 815. 933.
6 Gamma_c 0.301 0.297 0.0557 0.0547 0.216 0.403 1.00 834. 947.
7 Gamma_a_c -0.0211 -0.0189 0.0524 0.0482 -0.115 0.0613 1.00 790. 1012.
8 Iota_b 0.810 0.811 0.0387 0.0388 0.739 0.869 1.00 826. 878.
9 Iota_c 0.190 0.189 0.0387 0.0388 0.131 0.261 1.00 826. 878.

Here, again, we can also plot the traces and posterior distributions of these derived parameters (see
Figure 5 for the latter):

mcmc_trace(post_gen_agr)
mcmc_areas(post_gen_agr,

regex_pars = "^V",
prob = 0.95,
area_method = "scaled height") /

mcmc_areas(post_gen_agr,
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regex_pars = "^[^V]",
prob = 0.95,
area_method = "scaled height")

The point estimates are very close to what we obtained with their direct computation from the point
estimates from the model, but here, we have the full posterior of these variance decomposition, and
can e.g. compute their 95% credible interval.

Getting the variance-standardised estimates If wewant to compute the variance-standardised
estimates of our variance-decomposition (i.e. 𝑃2RN, ℎ

2
RN, ℎ

2 and ℎ2I ), we will need to compute the total
phenotypic variance in the reaction norm. An elegant way to do so is to construct a posterior draws
object containing all the variance parameters:

post_var_agr <-
bind_draws(post_agr, post_plas_agr, post_gen_agr) |>
subset_draws(variable = c("V_Plas", "V_Add", "V_A", "V_AxE", "V_R")) |>
mutate_variables(V_Tot = V_Plas + V_Add + V_R)

post_var_agr

# A draws_df: 250 iterations, 4 chains, and 6 variables
V_Plas V_Add V_A V_AxE V_R V_Tot

1 0.88 0.55 0.18 0.37 0.26 1.7
2 0.93 0.54 0.16 0.38 0.22 1.7
3 0.99 0.44 0.13 0.31 0.25 1.7
4 0.97 0.46 0.15 0.32 0.25 1.7
5 1.12 0.54 0.16 0.38 0.25 1.9
6 0.87 0.53 0.13 0.41 0.24 1.6
7 1.06 0.48 0.17 0.31 0.25 1.8
8 0.90 0.58 0.20 0.37 0.22 1.7
9 0.89 0.60 0.21 0.39 0.27 1.8
10 0.91 0.57 0.23 0.34 0.25 1.7
# ... with 990 more draws
# ... hidden reserved variables {'.chain', '.iteration', '.draw'}

Then, we can produce a table of all the parameters divided by the total phenotypic variance of the
reaction norm (we will use transmute() from dplyr in this case, to automatically get rid of the old
columns, but this means we have to make our dataset a posterior object again):

post_std_agr <-
post_var_agr |>
transmute(P2 = V_Plas / V_Tot,

H2_RN = V_Add / V_Tot,
H2 = V_A / V_Tot,
H2_I = V_AxE / V_Tot,
T2 = (V_Plas + V_Add) / V_Tot) |>

cbind(post_agr_info) |>
as_draws_df()

summarise_draws(post_std_agr)
mcmc_trace(post_std_agr)
mcmc_areas(post_std_agr,

prob = 0.95,
area_method = "scaled height")
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# A tibble: 5 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 P2 0.563 0.564 0.0283 0.0289 0.515 0.607 0.997 921. 915.
2 H2_RN 0.295 0.294 0.0272 0.0274 0.252 0.341 0.998 898. 895.
3 H2 0.0900 0.0883 0.0146 0.0148 0.0686 0.116 1.00 706. 882.
4 H2_I 0.205 0.204 0.0235 0.0224 0.170 0.246 0.998 898. 1021.
5 T2 0.858 0.859 0.0109 0.0113 0.840 0.876 0.999 1023. 953.

T2

H2_I

H2

H2_RN

P2

0.00 0.25 0.50 0.75

Figure 5: Posterior distribution of the variance-standardised estimates of our variance decomposition of the
reaction norm of aggressiveness, based on a quadratic model.

• 3.2 Analysing a non-linear reaction norm with a quadratic
curve

‣ 3.2.1 Overview of the data on performance
The data on performance can be found, yet again, in the dragon_discrete dataset shipped with the
Reacnorm package, that we transformed into tbl_dragon_ds (see the Performance column):

head(tbl_dragon_ds)

Name_Env Temp Individual Aggressiveness Performance Temp_Sq
1 Env_01 -2 Ind_01 -2.1600 -0.0234 4
2 Env_01 -2 Ind_02 -3.0300 0.0564 4
3 Env_01 -2 Ind_03 0.0278 0.0565 4
4 Env_01 -2 Ind_04 -1.3200 0.0744 4
5 Env_01 -2 Ind_05 -3.6800 0.0515 4
6 Env_01 -2 Ind_06 -2.7200 -0.0668 4

They are data providing a measure of locomotive performance of the dragons measured at different
temperatures. Locomotive performance is measured as the maximum sprint speed attained by indi-
viduals, when stimulated with a dummy princess at the end of a very long (thermostatic) corridor.
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Figure 6: Dragons thermal performance, measured as locomotive performance, according to the experimen-
tal test temperature

As for aggressiveness, we can have a look at how thermal performance depends on the experi-
mental temperature:

p_tpc <-
ggplot(tbl_dragon_ds) +
geom_line(aes(x = Temp, y = Performance, group = Individual, colour = Individual)) +
geom_point(aes(x = Temp, y = Performance, group = Individual, colour = Individual)) +
theme(legend.position = "none") +
xlab("Temperature") + ylab("Performance")

Figure 6 shows the resulting graph. Clearly, a quadratic curve will not be a perfect fit in this case.
We will, however, make do with a quadratic reaction norm to start with, to be able to understand
the average variation in terms of slope and curvature. We will measure the level of error we are
making by comparing our model with a more general character-state approach, and by computing
the 𝑀2

Plas introduced in the companion article.

‣ 3.2.2 Fitting a quadratic reaction norm to the data
Running the model The model is run exactly as in subsubsection 3.1.2, although here we will
use the column Performance as the response variable:

form_quad <- brmsformula(Performance ~ Temp + Temp_Sq +
(1 + Temp + Temp_Sq | Individual))

model_tpc_quad <-
brm(formula = form_quad,

data = tbl_dragon_ds,
save_pars = save_pars(group = FALSE),
chains = n_chains,
cores = n_chains,
seed = seed,
iter = n_iter,
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warmup = n_warm,
thin = n_thin)

This model should take approximately the same amount of time to run as model_agr previously.

Checking the model We first need to check that everything went well by looking at the model
summary:

summary(model_tpc_quad)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Performance ~ Temp + Temp_Sq + (1 + Temp + Temp_Sq | Individual)
Data: tbl_dragon_ds (Number of observations: 1000)
Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;

total post-warmup draws = 8000

Multilevel Hyperparameters:
~Individual (Number of levels: 100)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.20 0.02 0.16 0.24 1.00 3007 4285
sd(Temp) 0.06 0.01 0.04 0.08 1.00 4355 5811
sd(Temp_Sq) 0.05 0.01 0.04 0.07 1.00 3420 4693
cor(Intercept,Temp) 0.52 0.15 0.22 0.79 1.00 3235 3793
cor(Intercept,Temp_Sq) -0.88 0.05 -0.96 -0.76 1.00 4780 4768
cor(Temp,Temp_Sq) -0.10 0.21 -0.51 0.29 1.00 3039 3868

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.74 0.02 0.70 0.79 1.00 2869 4391
Temp 0.12 0.01 0.11 0.14 1.00 5290 5411
Temp_Sq -0.17 0.01 -0.19 -0.16 1.00 4809 5624

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.26 0.01 0.25 0.27 1.00 8096 6268

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

We can also plot the traces and posterior distributions of the parameters of the model (see Figure 7):

plot(model_tpc_quad)

Looking at the model fit We can superimpose the predictions from the quadratic model over
the actual reaction norms to visualise how good the fit is to the data (see the results in ):

tbl_tpc_mod_quad <-
tbl_dragon_ds |>
mutate(Predict = predict(model_tpc_quad, re_formula = NA) |>

as_tibble()) |>
unpack(Predict) |>
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Figure 7: Plot of the mod_tpc_quadmodel. Parameters starting with “b” are the fixed effects parameters of the
model, and parameters starting with “sd” are the standard deviation of the random effects. The parameter
“sigma” is the residual standard deviation.
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Predict = Estimate,
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Figure 8: Fit of the quadratic model of the thermal performance from mod_tpc_quad, superimposed over the
individual data.
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Predict_Low = Q2.5,
Predict_Up = Q97.5) |>

summarise(across(starts_with("Predict"), mean),
.by = Temp)

p_rn_tpc <-
p_tpc +
geom_ribbon(data = tbl_tpc_mod_quad,

mapping = aes(x = Temp, ymin = Predict_Low, ymax = Predict_Up),
alpha = 0.3) +

geom_line(data = tbl_tpc_mod_quad,
mapping = aes(x = Temp, y = Predict),
linewidth = 1)

Clearly, the fit is not great (notice also the strongest uncertainty than for aggressiveness), but it
does get most of the variation in the reaction norm. We will see how we can quantify this in a more
precise way using 𝑀2

Plas in a bit below.

‣ 3.2.3 A first variance decomposition
Getting the posterior distributions of the parameters We can obtain the full posterior distri-
bution of the parameters the same way as we did for the aggressiveness data⁷:

# Getting the design matrix
design_mat <- model.matrix(Performance ~ Temp + Temp_Sq, data = tbl_dragon_ds)

# Getting the error variance-covariance matrix S_theta
S_theta_tpc <- vcov(model_tpc_quad)
rownames(S_theta_tpc) <- colnames(S_theta_tpc) <- c("a", "b", "c")

# Getting the fixed effects from the model (with the whole posterior distribution)
theta_post_tpc <- fixef(model_tpc_quad, summary = FALSE)
colnames(theta_post_tpc) <- c("a", "b", "c")
# Getting the G-matrix from the random effects variances-covariances
G_post_tpc <-

VarCorr(model_tpc_quad, summary = FALSE)[["Individual"]][["cov"]] |>
apply(1, \(mat_) { mat_ }, simplify = FALSE) |>
map(\(mat_) { rownames(mat_) <- colnames(mat_) <- c("a", "b", "c"); return(mat_) })

# Creating a posterior sample using the posterior package
post_tpc <- as_draws_df(theta_post_tpc)
post_tpc[["G"]] <- G_post_tpc
post_tpc[["theta"]] <-

post_tpc |>
select(a:c) |>
apply(1, \(vec_) { vec_ }, simplify = FALSE)

# Subsetting the iterations to 1000
post_tpc <- thin_draws(post_tpc, thin = nrow(theta_post_tpc) / 1000)

⁷Note that we will skip using point estimates here, as using the full posterior distribution is generally better, notably
because we can assess the uncertainty surrounding our variance decomposition estimates
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# Keep the iteration/chain info to create new posterior objects
post_tpc_info <- select(post_tpc, starts_with("."))

We did everything here at once, but the steps are more detailed for the aggressiveness trait in sub-
subsection 3.1.4.

Decomposing the average reaction norm variance We used a quadratic function, but we
know that it is unlikely that the reaction norm curve truly is quadratic, so, we cannot use the 𝜋-
decomposition in this case. We will thus use the 𝜑-decomposition for good this time:

post_plas_tpc_quad <-
post_tpc |>
select(a, b, c) |>
apply(1, \(th_) rn_phi_decomp(theta = th_, X = design_mat, S = S_theta_tpc)) |>
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
cbind(post_tpc_info) |>
as_draws_df()

summarise_draws(post_plas_tpc_quad)

# A tibble: 3 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Plas 0.0867 0.0865 0.00655 0.00631 0.0761 0.0980 1.00 946. 981.
2 Phi_b 0.290 0.290 0.0340 0.0330 0.234 0.352 1.00 957. 772.
3 Phi_c 0.710 0.710 0.0340 0.0330 0.648 0.766 1.00 957. 772.

We cannot directly interpret the 𝜑𝑏 and 𝜑𝑐 estimates in terms of the contribution of slope (𝜋Sl) and
curvature (𝜋Cv) in the “geometric” sense of the term, because the environment is not normally dis-
tributed. But there’s another problem: given that the quadratic curve does not entirely follow the
reaction norms, we do not know whether we can trust the estimation of 𝑉Plas, so we might want to
fit a more applicable model to the data before we analyse anything.

‣ 3.2.4 Fitting a character-state model to the data
Running and checking themodel The character-state model takes advantage of our discretised
environments to analyse the environment as a categorical factor, rather than a continuous one. This
way, there is no need to parametrised a curve in advance for the model, as each environmental value
will have its own parameter. To do so, we will change the formula to define the model, using the
environment name column (Name_Env), and pass it to brms:

form_cs <- brmsformula(Performance ~ 0 + Name_Env + (0 + Name_Env | Individual))
model_cs_tpc <-

brm(formula = form_cs,
data = tbl_dragon_ds,
save_pars = save_pars(group = FALSE),
chains = n_chains,
cores = n_chains,
seed = seed,
iter = 6000,
warmup = 1000,
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thin = 1)
summary(model_cs_tpc)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Performance ~ 0 + Name_Env + (0 + Name_Env | Individual)
Data: tbl_dragon_ds (Number of observations: 1000)
Draws: 4 chains, each with iter = 6000; warmup = 1000; thin = 1;

total post-warmup draws = 20000

Multilevel Hyperparameters:
~Individual (Number of levels: 100)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Name_EnvEnv_01) 0.06 0.02 0.02 0.09 1.00 1765 3251
sd(Name_EnvEnv_02) 0.06 0.01 0.03 0.09 1.00 2718 5557
sd(Name_EnvEnv_03) 0.11 0.01 0.09 0.14 1.00 5238 11208
sd(Name_EnvEnv_04) 0.14 0.01 0.11 0.16 1.00 7023 13178
sd(Name_EnvEnv_05) 0.19 0.01 0.16 0.22 1.00 7363 12646
sd(Name_EnvEnv_06) 0.24 0.02 0.21 0.28 1.00 6553 11333
sd(Name_EnvEnv_07) 0.28 0.02 0.24 0.32 1.00 6239 9848
sd(Name_EnvEnv_08) 0.30 0.02 0.26 0.34 1.00 6859 10767
sd(Name_EnvEnv_09) 0.39 0.03 0.33 0.44 1.00 8810 11828
sd(Name_EnvEnv_10) 0.20 0.02 0.17 0.24 1.00 9102 12198
cor(Name_EnvEnv_01,Name_EnvEnv_02) 0.12 0.24 -0.34 0.58 1.00 3369 6169
cor(Name_EnvEnv_01,Name_EnvEnv_03) 0.22 0.19 -0.16 0.58 1.00 2173 3928
cor(Name_EnvEnv_02,Name_EnvEnv_03) 0.30 0.18 -0.07 0.64 1.00 2576 4378
cor(Name_EnvEnv_01,Name_EnvEnv_04) 0.40 0.17 0.05 0.71 1.00 2553 4913
cor(Name_EnvEnv_02,Name_EnvEnv_04) 0.41 0.17 0.07 0.72 1.00 2517 4931
cor(Name_EnvEnv_03,Name_EnvEnv_04) 0.61 0.11 0.37 0.80 1.00 5894 8772
cor(Name_EnvEnv_01,Name_EnvEnv_05) 0.34 0.16 0.01 0.66 1.00 1855 2940
cor(Name_EnvEnv_02,Name_EnvEnv_05) 0.46 0.15 0.15 0.73 1.00 2523 4113
cor(Name_EnvEnv_03,Name_EnvEnv_05) 0.65 0.10 0.44 0.82 1.00 4754 7894
cor(Name_EnvEnv_04,Name_EnvEnv_05) 0.72 0.08 0.55 0.86 1.00 4598 9687
cor(Name_EnvEnv_01,Name_EnvEnv_06) 0.32 0.16 0.02 0.63 1.00 1693 2350
cor(Name_EnvEnv_02,Name_EnvEnv_06) 0.40 0.15 0.09 0.68 1.00 2141 3316
cor(Name_EnvEnv_03,Name_EnvEnv_06) 0.66 0.09 0.48 0.82 1.00 4355 7048
cor(Name_EnvEnv_04,Name_EnvEnv_06) 0.75 0.07 0.60 0.87 1.00 5458 10968
cor(Name_EnvEnv_05,Name_EnvEnv_06) 0.89 0.04 0.80 0.95 1.00 5881 10335
cor(Name_EnvEnv_01,Name_EnvEnv_07) 0.29 0.16 -0.03 0.60 1.00 1668 2143
cor(Name_EnvEnv_02,Name_EnvEnv_07) 0.30 0.15 -0.01 0.59 1.00 2130 3590
cor(Name_EnvEnv_03,Name_EnvEnv_07) 0.48 0.10 0.27 0.67 1.00 4374 7448
cor(Name_EnvEnv_04,Name_EnvEnv_07) 0.64 0.08 0.48 0.78 1.00 6163 11145
cor(Name_EnvEnv_05,Name_EnvEnv_07) 0.79 0.05 0.68 0.88 1.00 5849 10299
cor(Name_EnvEnv_06,Name_EnvEnv_07) 0.86 0.04 0.78 0.93 1.00 5889 11602
cor(Name_EnvEnv_01,Name_EnvEnv_08) 0.15 0.16 -0.16 0.48 1.00 1715 2172
cor(Name_EnvEnv_02,Name_EnvEnv_08) 0.06 0.16 -0.25 0.37 1.00 1956 2961
cor(Name_EnvEnv_03,Name_EnvEnv_08) 0.45 0.10 0.24 0.64 1.00 4189 8169
cor(Name_EnvEnv_04,Name_EnvEnv_08) 0.46 0.09 0.26 0.63 1.00 5904 10000
cor(Name_EnvEnv_05,Name_EnvEnv_08) 0.61 0.07 0.45 0.74 1.00 6915 11837
cor(Name_EnvEnv_06,Name_EnvEnv_08) 0.76 0.05 0.65 0.85 1.00 9471 14779
cor(Name_EnvEnv_07,Name_EnvEnv_08) 0.86 0.04 0.79 0.92 1.00 8228 14263
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3.2 Analysing a non-linear reaction norm with a quadratic curve

cor(Name_EnvEnv_01,Name_EnvEnv_09) 0.02 0.17 -0.32 0.35 1.00 1978 3020
cor(Name_EnvEnv_02,Name_EnvEnv_09) -0.22 0.16 -0.52 0.10 1.00 1890 3939
cor(Name_EnvEnv_03,Name_EnvEnv_09) -0.14 0.12 -0.36 0.09 1.00 4826 8989
cor(Name_EnvEnv_04,Name_EnvEnv_09) -0.17 0.11 -0.37 0.05 1.00 5328 11048
cor(Name_EnvEnv_05,Name_EnvEnv_09) 0.02 0.10 -0.17 0.22 1.00 7439 10641
cor(Name_EnvEnv_06,Name_EnvEnv_09) 0.20 0.09 0.02 0.37 1.00 9381 13733
cor(Name_EnvEnv_07,Name_EnvEnv_09) 0.47 0.08 0.31 0.61 1.00 10259 13876
cor(Name_EnvEnv_08,Name_EnvEnv_09) 0.65 0.06 0.52 0.75 1.00 11453 13792
cor(Name_EnvEnv_01,Name_EnvEnv_10) -0.09 0.18 -0.44 0.27 1.00 2048 3081
cor(Name_EnvEnv_02,Name_EnvEnv_10) -0.04 0.17 -0.38 0.29 1.00 1877 2577
cor(Name_EnvEnv_03,Name_EnvEnv_10) -0.18 0.12 -0.42 0.06 1.00 4643 9162
cor(Name_EnvEnv_04,Name_EnvEnv_10) -0.17 0.11 -0.38 0.06 1.00 6007 10506
cor(Name_EnvEnv_05,Name_EnvEnv_10) -0.15 0.10 -0.35 0.06 1.00 8391 13452
cor(Name_EnvEnv_06,Name_EnvEnv_10) 0.01 0.10 -0.19 0.21 1.00 9588 14460
cor(Name_EnvEnv_07,Name_EnvEnv_10) 0.10 0.10 -0.10 0.29 1.00 11711 14658
cor(Name_EnvEnv_08,Name_EnvEnv_10) 0.17 0.10 -0.03 0.36 1.00 13629 16173
cor(Name_EnvEnv_09,Name_EnvEnv_10) 0.54 0.08 0.37 0.68 1.00 13426 16683

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Name_EnvEnv_01 0.04 0.01 0.02 0.06 1.00 18101 15540
Name_EnvEnv_02 0.08 0.01 0.06 0.10 1.00 16308 14263
Name_EnvEnv_03 0.20 0.01 0.17 0.22 1.00 7720 12567
Name_EnvEnv_04 0.37 0.02 0.34 0.40 1.00 6724 11503
Name_EnvEnv_05 0.60 0.02 0.56 0.64 1.00 5497 10036
Name_EnvEnv_06 0.81 0.03 0.76 0.87 1.00 4865 9047
Name_EnvEnv_07 0.95 0.03 0.89 1.01 1.00 4923 8811
Name_EnvEnv_08 0.98 0.03 0.92 1.04 1.00 5091 9087
Name_EnvEnv_09 0.53 0.04 0.45 0.61 1.00 7929 11100
Name_EnvEnv_10 0.05 0.02 0.01 0.10 1.00 10566 12887

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.09 0.00 0.08 0.10 1.01 1184 582

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Note that we had to increase the number of iterations to run themodel, because the residual standard
deviation had too small efficient sample size and too high 𝑅. The high number of parameters are due
to the fact that, as part of the character-state model, we now infer a 10× 10 G matrix, with additive
genetic variances and covariances across all pairs of environments. We can also graphically check
that everything went smoothly, but we will only select a few parameters to not overwhelm the
graphic (see Figure 9):

# We select everything starting with a "b_" (fixed effects) and the residual sd
plot(model_cs_tpc, variable = c("^b_", "sigma"), regex = TRUE)

Because the character-state does not make explicit assumption about the shape of the curve of
the reaction norm, we can see the fit of each point to the global curve is better than the quadratic
curve (see Figure 10):
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3.2 Analysing a non-linear reaction norm with a quadratic curve

Figure 9: Plot of the mod_cs_tpc model. Parameters starting with “b” are the fixed effects parameters of the
model. The parameter “sigma” is the residual standard deviation.

tbl_tpc_mod_cs <-
tbl_dragon_ds |>
mutate(Predict = predict(model_cs_tpc, re_formula = NA) |>
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Figure 10: Fit of the character-state model of the thermal performance from mod_cs_tpc, superimposed over
the individual data.
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3.2 Analysing a non-linear reaction norm with a quadratic curve

as_tibble()) |>
unpack(Predict) |>
select(Temp,

Predict = Estimate,
Predict_Low = Q2.5,
Predict_Up = Q97.5) |>

summarise(across(starts_with("Predict"), mean),
.by = Temp)

p_rn_tpc_cs <-
p_tpc +
geom_pointrange(data = tbl_tpc_mod_cs,

mapping = aes(x = Temp, y = Predict, ymin = Predict_Low, ymax = Predict_Up),
size = 1, linewidth = 1, shape = 4)

Extracting the parameters from the model As always, the first thing to do is to extract the
parameters of interest from the model. Since the character-state model is quite straightforward,
we can directly extract 𝑉Plas (which is simply the variance of the population-level effects) and the
G-matrix. We will directly extract their posterior distribution this time:

# Getting the uncertainty on the parameters
var_uncert_cs_tpc <-

vcov(model_cs_tpc) |>
diag() |>
mean()

# Computing V_plas
post_theta_cs <-

fixef(model_cs_tpc, summary = FALSE) |>
as_draws_df()

var_plas_cs <-
post_theta_cs |>
select(starts_with("Name")) |>
as.matrix() |>
rowVars()

# Correcting for the uncertainty
post_cs <-

data.frame(V_Plas = var_plas_cs - var_uncert_cs_tpc) |>
cbind(select(post_theta_cs, starts_with("."))) |>
as_draws_df()

# Getting the G-matrix
post_cs[["G"]] <-

VarCorr(model_cs_tpc, summary = FALSE)[["Individual"]][["cov"]] |>
apply(1, \(mat_) { mat_ }, simplify = FALSE)

# Getting the residual variance
post_cs[["V_R"]] <-

VarCorr(model_cs_tpc, summary = FALSE)[["residual__"]][["sd"]][ , 1]^2

And of course, we will subset the iterations to a thousands, once again:
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3.2 Analysing a non-linear reaction norm with a quadratic curve

post_cs <- thin_draws(post_cs, thin = length(var_plas_cs) / 1000)
post_cs_info <- select(post_cs, starts_with("."))

Let’s look at the output for 𝑉Plas:

summarise_draws(subset_draws(post_cs, variable = "V_Plas"))

# A tibble: 1 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Plas 0.136 0.136 0.00841 0.00838 0.122 0.150 0.999 845. 1011.

As expected, the variance due to the average reaction norm obtained from the character-state (𝑉Plas =
0.136) is bigger than the one obtained from the quadratic model (𝑉Plas = 0.087), so that we roughly
have 𝑀2

Plas = 0.087/0.136 = 0.64. We will see later how to compute 𝑀2
Plas more properly, using the

full posterior distribution.

Computing the additive genetic variances from the character-statemodel Wecan compute
the additive genetic variances𝑉Add,𝑉A and𝑉A×E directly from theG-matrix when using a character-
state model. 𝑉Add is the average of the diagonal elements, while 𝑉A is the average of all elements
of the G-matrix. We can then simply obtain 𝑉A×E using the difference between the two variances:
𝑉A×E = 𝑉Add −𝑉A. This is implemented in the rn_cs_gen() function of the Reacnorm package:

post_gen_cs <-
map(post_cs[["G"]], rn_cs_gen, .progress = TRUE) |>
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
cbind(post_tpc_info) |>
as_draws_df()

summarise_draws(post_gen_cs)

# A tibble: 4 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Add 0.0488 0.0485 0.00461 0.00444 0.0419 0.0567 1.00 959. 949.
2 V_A 0.0182 0.0180 0.00235 0.00225 0.0146 0.0222 1.00 1011. 968.
3 V_AxE 0.0306 0.0305 0.00291 0.00265 0.0262 0.0356 1.00 922. 742.
4 N_eff 1.69 1.69 0.108 0.112 1.53 1.88 1.00 1011. 987.

The function also outputs 𝑛eff, the efficient number of dimensions. However, please keep in mind
that this value seems to suffer from underestimation, as shown in the companion paper (de Ville-
mereuil & Chevin 2025). Nevertheless, the number is relatively low compared to the total number
of environment (10), suggesting a rather high level of constraints in the genetic variation of the
reaction norm across environments. This is also supported by the additive genetic variance decom-
position of the reaction norm, with almost two times higher additive genetic variance in plasticity
(𝑉A×E = 0.031) than the environment-blind additive genetic variance (𝑉A = 0.018).

Computing the variance-standardised parameters Wecan compute the variance-standardised
parameters from the character-state pretty much the same we did it for the aggressiveness trait (see
Figure 9):

post_var_tpc_cs <-
bind_draws(post_cs, post_gen_cs) |>
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3.2 Analysing a non-linear reaction norm with a quadratic curve

subset_draws(variable = c("V_Plas", "V_Add", "V_A", "V_AxE", "V_R")) |>
mutate_variables(V_Tot = V_Plas + V_Add + V_R)

post_std_tpc_cs <-
post_var_tpc_cs |>
transmute(P2 = V_Plas / V_Tot,

H2_RN = V_Add / V_Tot,
H2 = V_A / V_Tot,
H2_I = V_AxE / V_Tot,
T2 = (V_Plas + V_Add) / V_Tot) |>

cbind(post_cs_info) |>
as_draws_df()

summarise_draws(post_std_tpc_cs)
mcmc_trace(post_std_tpc_cs)
mcmc_areas(post_std_tpc_cs,

prob = 0.95,
area_method = "scaled height")

# A tibble: 5 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 P2 0.706 0.708 0.0207 0.0198 0.669 0.738 1.00 894. 713.
2 H2_RN 0.254 0.253 0.0211 0.0202 0.222 0.291 1.00 916. 836.
3 H2 0.0947 0.0941 0.0111 0.0106 0.0779 0.114 1.00 1009. 938.
4 H2_I 0.160 0.159 0.0138 0.0130 0.138 0.184 1.00 900. 806.

T2

H2_I

H2

H2_RN

P2

0.00 0.25 0.50 0.75 1.00

Figure 11: Posterior distribution of the variance-standardised estimates of our variance decomposition of
the reaction norm of thermal performance, based on a character-state model.
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3.2 Analysing a non-linear reaction norm with a quadratic curve

‣ 3.2.5 A better variance decomposition, combining quadratic and
character-state models

Studying the average reaction norm Since we know the variances obtained from the character-
state model are more trustworthy, we can use them for our variance decomposition. But at the same
time, we would still like to be able to say how much of the variation we observe is explained by
a first-order linear trend or a second-order one. To approximate such values, we can combine the
estimates from the quadratic model with the variances (here𝑉Plas) obtained from the character-state
model:

post_plas_tpc_withcs <-
# Note that we get theta from the quadratic model,
# but V_Plas from the character-state one
map2(post_tpc[["Theta"]], post_cs[["V_Plas"]],

\(th_, v_) rn_phi_decomp(theta = th_,
X = design_mat,
S = S_theta_tpc,
v_plas = v_),

.progress = TRUE) |>
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
cbind(post_tpc_info) |>
as_draws_df()

summarise_draws(post_plas_tpc_withcs)
mcmc_trace(post_plas_tpc_withcs)
mcmc_areas(post_plas_tpc_withcs,

regex_pars = "^V",
prob = 0.95,
area_method = "scaled height") /

mcmc_areas(post_plas_tpc_withcs,
regex_pars = "^[^V]",
prob = 0.95,
area_method = "scaled height") +

plot_layout(heights = c(1, 3))

# A tibble: 4 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Plas 0.136 0.136 0.00841 0.00838 0.122 0.150 1.00 886. 1051.
2 Phi_b 0.186 0.185 0.0287 0.0286 0.141 0.237 1.00 989. 916.
3 Phi_c 0.456 0.454 0.0487 0.0473 0.380 0.538 0.998 1004. 1016.
4 M2 0.642 0.638 0.0622 0.0624 0.541 0.748 1.00 1031. 1081.

This output (see also Figure 12) is different from the one we obtained directly with the quadratic
model. First, the value for 𝑉Plas (which was not computed here, but directly taken from post_cs) is
larger here. Second, and a consequence, the values for 𝜑𝑏 and 𝜑𝑐 are smaller, and do not sum to
1 any more. Of course, however, their relative values (i.e. 𝜑𝑏/𝜑𝑐 ) is conserved. Third, the function
rn_phi_decomp() this time returned a new value: the ratio𝑀2

Plas of the estimation of𝑉Plas as estimated
from the quadratic model to the estimation of 𝑉Plas from the character-state. This value measures
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Figure 12: Posterior distribution of the variance decomposition of the reaction norm of aggressiveness, based
on a quadratic model.

how well the quadratic model was a good approximation of the reaction norm. Here, 𝑀2
Plas = 0.64⁸,

which is not extremely great (i.e. the fit is clearly not perfect and we should not have used the values
from the quadratic model directly), but not too bad either (i.e. the combination with character-state
as we’re doing is still informative). Note that, because the character-state does not make explicit
assumptions about the shape of the reaction norm and is thus more “encompassing”, we expect
𝑀2

Plas ≤ 1 in general.

Studying the additive genetic variation We can have the same hybrid approach to the additive
genetic variance decomposition, by providing the parameters values from the quadratic model, but
the estimated variances from the character-state. To do so, we will use the add_vars argument from
the rn_gen_decomp() function:

# Adding a column containing the three additive genetic variances
# to the character-state posterior draws
post_gen_cs[["Add_Vars"]] <-

post_gen_cs |>
select(starts_with("V")) |>
apply(1, \(row_) { c(row_) }, simplify = FALSE)

# Calling rn_gen_decomp(), but provided values from the character-state
# to add_vars
post_gen_tpc_withcs <-

pmap(list(th_ = post_tpc[["Theta"]],
G_ = post_tpc[["G"]],

⁸Note that we were bad at all with our little computation above
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v_ = post_gen_cs[["Add_Vars"]]),
\(th_, G_, v_) rn_gen_decomp(theta = th_,

G_theta = G_,
X = design_mat,
add_vars = v_),

.progress = TRUE) |>
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
cbind(post_tpc_info) |>
as_draws_df()

summarise_draws(post_gen_tpc_withcs)
mcmc_trace(post_gen_tpc_withcs)
mcmc_areas(post_gen_tpc_withcs,

regex_pars = "^V",
prob = 0.95,
area_method = "scaled height") /

mcmc_areas(post_gen_tpc_withcs,
regex_pars = "^[^V]",
prob = 0.95,
area_method = "scaled height") +

plot_layout(heights = c(3, 6))

# A tibble: 9 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Add 0.0488 0.0485 0.00461 0.00444 0.0419 0.0567 1.00 959. 949.
2 V_A 0.0182 0.0180 0.00235 0.00225 0.0146 0.0222 1.00 1011. 968.
3 V_AxE 0.0306 0.0305 0.00291 0.00265 0.0262 0.0356 1.00 922. 742.
4 Gamma_a 0.852 0.837 0.185 0.177 0.582 1.19 1.00 944. 913.
5 Gamma_b 0.121 0.118 0.0372 0.0358 0.0669 0.190 1.00 922. 888.
6 Gamma_c 0.249 0.240 0.0789 0.0736 0.136 0.392 1.00 1058. 993.
7 Gamma_a_c -0.607 -0.591 0.168 0.164 -0.917 -0.367 1.00 1004. 969.
8 Iota_b 0.193 0.185 0.0597 0.0562 0.106 0.305 1.00 946. 861.
9 Iota_c 0.173 0.167 0.0554 0.0516 0.0955 0.276 1.00 1039. 993.

See Figure 12 for the posterior distributions. Of course, the values for𝑉Add,𝑉A and𝑉A×E are the same
as the one we computed from the character-state and, they were directly used and not re-computed.
Note also that, because we used the variances from the character-state to scale them (as we did for
𝜑 above), the 𝛾 ’s and 𝜄’s do not sum to 1 either in this case. All of this is a bit “hacky” and not as
good as finding a proper curve, fitting well our reaction norm, as we will see now.

• 3.3 Analysing a reaction norm with a non-linear model

‣ 3.3.1 Running a non-linear model
The Gaussian-Gompertz function Looking at Figure 6, the shape seems to follow the typical
asymmetrical quasi-bell shape of thermal performance traits. A commonly used function to study
such kind of traits is the Gaussian-Gompertz function. It is a relatively complex function that de-
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pends on 4 parameters (highlighted below):

𝑧 = 𝐶max exp
(
− exp (𝜌 (𝜀 − 𝜀0) − 6) − 𝜎 (𝜀 − 𝜀0)2

)
(1)

However, for the sake of simplicity, we will only make two of them (𝐶max and 𝜀0) vary genetically⁹.

Preparing the model Running a non-linear model in brms is relatively straightforward, but it
does require new elements of syntax:

form_nl <- brmsformula(Performance ~ cmax * exp(
- exp(rho * (Temp - xopt) - 6) - # Gompertz part

sigmagaus * (Temp - xopt)^2 # Gaussian part
),

cmax + xopt ~ 1 + (1 | ID1 | Individual),
rho + sigmagaus ~ 1,
nl = TRUE)

Starting from the end, notice we set the argument nl to TRUE, telling brmsformula() that we want to
set up a non-linear model. Then (still from the end), we set up two groups of parameters: rho and
sigmagaus will be inferred, but fixed across individuals; while cmax and xopt will be allow to vary
across individuals. The ID1 part is just a placeholder (it could be any string of character) to tell brms
that we want to infer the covariances between cmax and xopt. Finally (at the top), we define the equa-
tion of the model, linking the response variable Performance with the environmental variable Temp,
following Equation 1. While we were using the default priors until now, the situation is different
for a non-linear model, because it is hard for brms to come up with relevant priors for the non-linear
parameters. So, we will help it by providing priors for the parameters that cannot take negative
values. Although we could come up with smarter priors, we will simply here use uniform priors for
those parameters, specifying a higher bound far away enough from the values that we expect to be
realistic:

prior_nl <-
prior(uniform(0, 10), nlpar = "cmax", lb = 0, ub = 100) +
prior(uniform(0, 100), nlpar = "rho", lb = 0, ub = 100) +
prior(uniform(0, 10), nlpar = "sigmagaus", lb = 0, ub = 10)

Another thing that is now required and that is difficult for brms to figure out are the starting values
for the non-linear parameters, which we will thus provide based on ballpark idea of what their value
should be:

inits <- rep(list(list(b_cmax = array(data = 1),
b_xopt = array(data = 0.9),
b_rho = array(data = 8),
b_sigmagaus = array(data = 0.4))), 4)

Finally, we will use an increased total number of iterations:

# Total number of iterations
n_iter_nl <- 7000
# Number of iterations that will be discarded for the warm-up
n_warm_nl <- 1000
# Thinning interval
n_thin_nl <- 1

⁹If you are curious at to what it looks like in practice, you can spoil the end for yourself and look directly at Figure 14.
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Now, we are ready to run the model!

Running the model Now that we have prepared everything, running the model is very much
like the linear instance (although note that we now provide prior and init):

model_nl_tpc <-
brm(formula = form_nl,

data = tbl_dragon_ds,
save_pars = save_pars(group = FALSE),
chains = n_chains,
cores = n_chains,
seed = seed,
init = inits,
prior = prior_nl,
iter = n_iter_nl,
warmup = n_warm_nl,
thin = n_thin_nl)

This might take a bit longer than the other models, but not by much.

Checking the model Let’s look at the model estimates:

summary(model_nl_tpc)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Performance ~ cmax * exp(-exp(rho * (Temp - xopt) - 6) - sigmagaus * (Temp - xopt)^2)
cmax ~ 1 + (1 | ID1 | Individual)
xopt ~ 1 + (1 | ID1 | Individual)
rho ~ 1
sigmagaus ~ 1

Data: tbl_dragon_ds (Number of observations: 1000)
Draws: 4 chains, each with iter = 7000; warmup = 1000; thin = 1;

total post-warmup draws = 24000

Multilevel Hyperparameters:
~Individual (Number of levels: 100)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(cmax_Intercept) 0.32 0.02 0.28 0.38 1.00 1777 3667
sd(xopt_Intercept) 0.21 0.02 0.18 0.24 1.00 2524 5804
cor(cmax_Intercept,xopt_Intercept) 0.24 0.10 0.02 0.43 1.00 1459 2915

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

cmax_Intercept 1.01 0.03 0.95 1.08 1.01 813 1833
xopt_Intercept 0.95 0.03 0.90 1.01 1.00 1994 5184
rho_Intercept 8.37 0.27 7.88 8.93 1.00 9192 13020
sigmagaus_Intercept 0.38 0.01 0.36 0.40 1.00 10942 14635

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.10 0.00 0.10 0.11 1.00 18600 18545
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3.3 Analysing a reaction norm with a non-linear model

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

The 𝑅 and effective sample size for all parameters are acceptable, and the point values and credible
intervals for them seem coherent. We can verify also graphically that everything went smoothly by
looking at their trace and posterior distributions (see Figure 13):

plot(model_nl_tpc)

Figure 13: Plot of the mod_nl_tpc model. Parameters starting with “b” are the fixed effects of the non-linear
parameters of the model, and parameters starting with “sd” are the standard deviation of the random effects
of the non-linear parameters. The parameter “sigma” is the residual standard deviation.

Finally, we can also look at the fit of the model to the raw data, by placing the model predictions
over the raw phenotypes (see Figure 14):

tbl_tpc_mod <-
tbl_dragon_ds |>
mutate(Predict = predict(model_nl_tpc, re_formula = NA) |>

as_tibble()) |>
unpack(Predict) |>
select(Temp,

Predict = Estimate,
Predict_Low = Q2.5,
Predict_Up = Q97.5) |>

summarise(across(starts_with("Predict"), mean),
.by = Temp)

p_rn_tpc <-
p_tpc +
geom_ribbon(data = tbl_tpc_mod,

mapping = aes(x = Temp, ymin = Predict_Low, ymax = Predict_Up),
alpha = 0.3) +
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3.3 Analysing a reaction norm with a non-linear model

geom_line(data = tbl_tpc_mod,
mapping = aes(x = Temp, y = Predict),
linewidth = 1)
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Figure 14: Thermal performance individual data, with the non-linear reaction norm predicted by the
mod_tpc_nl model.

The fit this time is much better than with the quadratic curve¹⁰. So, with this much better curve, we
should be able to readily apply our variance decomposition!

‣ 3.3.2 Decomposing the variance of a non-linear model
Extracting the parameters The code used to extract the estimation of the parameters of interest
for the variance decomposition is surprisingly similar to the linear case. We just to do a bit more
work regarding the names:

theta_post_nl_tpc <- fixef(model_nl_tpc, summary = FALSE)
# We remove the "_Intercept" part of the name
colnames(theta_post_nl_tpc) <- str_remove(colnames(theta_post_nl_tpc), "_Intercept")
head(theta_post_nl_tpc)

variable
draw cmax xopt rho sigmagaus

1 0.9968932 0.9641778 8.219535 0.3843630
2 1.0087171 0.9462906 8.454820 0.3873613
3 1.0038337 0.9577721 8.381722 0.3799357

¹⁰Well, that is to be expected, because this happen to be exactly the true curve of reaction norms.
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3.3 Analysing a reaction norm with a non-linear model

4 1.0123249 0.9456947 8.433239 0.3816431
5 0.9988809 0.9244892 8.479489 0.3733265
6 1.0398035 0.9162629 8.312176 0.3971904

G_post_nl_tpc <-
VarCorr(model_nl_tpc, summary = FALSE)[["Individual"]][["cov"]] |>
apply(1, \(mat_) { mat_ }, simplify = FALSE) |>
# Same here for "_Intercept" part of the name
map(\(mat_) { rownames(mat_) <- colnames(mat_) <- str_remove(rownames(mat_), "_Intercept"); return(mat_) })

G_post_nl_tpc[[1]]

cmax xopt
cmax 0.102789698 0.001781295
xopt 0.001781295 0.028796905

vr_post_nl_tpc <-
VarCorr(model_nl_tpc, summary = FALSE)[["residual__"]][["sd"]][ , 1]^2

The object theta_post_nl_tpc contains all the “fixed effect” part of the parameters estimation, while
G_post_nl_tpc contains the variances and covariance estimates from their “random part”. Remember
that we only allowed cmax and xopt to vary genetically across individuals in the model. Because
of that, our G-matrix is smaller than our parameter vector 𝜃 , but worry not, as Reacnorm will be
able to account for this! It is especially important here to reduce the number of kept iterations to a
thousand, because the functions that we will use rely (more) on numerical integration and are thus
a bit slower:

post_nl_tpc <- as_draws_df(theta_post_nl_tpc)
post_nl_tpc[["G"]] <- G_post_nl_tpc
post_tpc[["Theta"]] <-

post_tpc |>
select(a:c) |>
apply(1, \(vec_) { vec_ }, simplify = FALSE)

post_nl_tpc[["V_R"]] <- vr_post_nl_tpc
post_nl_tpc <- thin_draws(post_nl_tpc, thin = nrow(theta_post_nl_tpc) / 1000)
# Keep the iteration/chain info to create new posterior objects
post_nl_tpc_info <- select(post_nl_tpc, starts_with("."))

Generating the expression for the reaction norm curve Because the model in non-linear this
time, Reacnorm has no idea what the assumed shape of the reaction norm was simply based on vector
of parameters and the environmental values (i.e. the design_matrix we used before). This time, we
need to be able to provide the functions with the shape we used for the reaction norm. To do so,
we will have to generate an “expression” in R, which will refer to the environment as x and use
exactly the same parameter names as we did for brms. This can be done quite easily in R using
the expression() function:

gg_shape <- expression(
cmax * exp(

- exp(rho * (x - xopt) - 6) -
sigmagaus * (x - xopt)^2

)
)

We will also require a vector of unique environmental value that we will prepare:
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3.3 Analysing a reaction norm with a non-linear model

vec_env <- unique(tbl_dragon_ds[["Temp"]])

Computing the variance of average reaction norm (and its decomposition?) This time,
since the model is non-linear, we cannot compute the 𝜑-decomposition using the rn_phi_decomp().
Also, because the environmental variable is a fixed, discretised variable, it does not follow a normal
distribution, so we cannot properly compute the 𝜋-decomposition either¹¹. Still, we can obtain𝑉Plas
directly using the rn_vplas() function. To do so, we have to provide the shape of the reaction norm
(with gg_shape) and the vector of environmental values (with vec_env) directly. Finally, we need to
state to Reacnorm that the third (rho) and fourth (sigmagaus) values of the vector of parameters are not
present in the G-matrix, which we do using the fixed parameter:

post_v_plas_nl_tpc <-
map2(post_nl_tpc[["Theta"]], post_nl_tpc[["G"]],

\(th_, G_) { data.frame(V_Plas = rn_vplas(theta = th_,
V_theta = G_,
env = vec_env,
shape = gg_shape,
fixed = c(3, 4))) },

.progress = TRUE) |>
bind_rows() |>
cbind(post_nl_tpc_info) |>
as_draws_df()

summarise_draws(post_v_plas_nl_tpc)

# A tibble: 1 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Plas 0.121 0.121 0.00801 0.00791 0.108 0.135 1.01 763. 689.

Note that this value is relatively close to the one we obtained using the character-state model in
subsubsection 3.2.4.

The 𝜋-decomposition assuming a normal distribution Now, if we wanted to still use the 𝜋-
decomposition, we would need to assumed that the temperature is actually normally distributed.
One way to do so is to weight each of the environments according the density of a normal distribu-
tion. We can use the dnorm() function to compute such densities and pass them to wt_env argument
of Reacnorm. This way, we can use the rn_pi_decomp() function of Reacnorm, since we’re assuming a
normal distribution:

post_plas_nl_tpc_norm <-
map2(post_nl_tpc[["Theta"]], post_nl_tpc[["G"]],

\(th_, G_) { rn_pi_decomp(theta = th_,
V_theta = G_,
env = vec_env,
shape = gg_shape,
fixed = c(3, 4),
wt_env = dnorm(vec_env)) },

.progress = TRUE) |>
bind_rows() |>
cbind(post_nl_tpc_info) |>

¹¹Although we’ll see how we can find a way in an instant
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as_draws_df()
summarise_draws(post_plas_nl_tpc_norm)

# A tibble: 3 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Plas 0.0927 0.0927 0.00621 0.00619 0.0828 0.103 1.01 761. 755.
2 Pi_Sl 0.329 0.325 0.0265 0.0205 0.292 0.384 0.998 818. 953.
3 Pi_Cv 0.195 0.195 0.0101 0.00949 0.178 0.211 0.999 871. 1032.

Since we assumed a different distribution for the environment, the estimated value for𝑉Plas changed.
This time, however, we obtained a proper 𝜋-decomposition into a slope and curvature components¹².
Notably, the part of the variance arising from the slope is considerable (𝜋Sl = 0.33), as is the part
arising from curvature to a lesser extent (𝜋Cv = 0.20). It should be noted, for the interpretation of
those values, that since we assumed a normal distribution, the values of the environment close to 0
(the mean value of the environment) are given more weight than values close to -2 or 2. As such,
the slope and curvature near 0 are the ones that are driving the values for 𝜋Sl and 𝜋Cv.

Computing the additive genetic variance decomposition When studying the additive ge-
netic variance, we do not require the normality assumption about the environment to perform the
𝛾- or 𝜄-decomposition, and thus, we can readily apply the rn_gen_decomp() function:

post_gen_nl_tpc <-
map2(post_nl_tpc[["Theta"]], post_nl_tpc[["G"]],

\(th_, G_) { rn_gen_decomp(theta = th_,
G_theta = G_,
env = vec_env,
shape = gg_shape,
fixed = c(3, 4)) },

.progress = TRUE) |>
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
cbind(post_nl_tpc_info) |>
as_draws_df()

summarise_draws(post_gen_nl_tpc)

# A tibble: 9 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Add 0.0495 0.0491 0.00557 0.00552 0.0411 0.0594 1.01 994. 836.
2 V_A 0.0224 0.0220 0.00342 0.00355 0.0173 0.0284 1.01 936. 800.
3 V_AxE 0.0272 0.0271 0.00250 0.00251 0.0234 0.0314 1.01 1024. 984.
4 Gamma_cmax 0.700 0.703 0.0403 0.0412 0.632 0.762 1.00 864. 892.
5 Gamma_xopt 0.303 0.300 0.0405 0.0415 0.241 0.373 1.00 870. 893.
6 Gamma_cmax_xopt -0.00298 -0.00204 0.00327 0.00249 -0.00965 0.000270 0.999 811. 856.
7 Iota_cmax 0.460 0.461 0.0490 0.0509 0.382 0.540 1.00 873. 943.
8 Iota_xopt 0.548 0.548 0.0494 0.0509 0.469 0.629 1.00 881. 979.
9 Iota_cmax_xopt -0.00806 -0.00638 0.00692 0.00588 -0.0214 -0.000332 1.00 834. 943.

¹²Note that we could have used the same trick for the quadratic curve we used above, but given the not-so-good fit,
the results would not have been very trustworthy.
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Comparing such values with the character-state model in subsubsection 3.2.4, the values for the
total additive genetic variance (𝑉Add) are very close, but the values for 𝑉A and 𝑉A×E are different,
with more balance between these two components in this non-linear model than in the character-
state model. Given the credible intervals, this is likely to be just stochastic fluctuation. As we can
see, most of the additive genetic variance in the reaction norm seems to come from genetic variation
in 𝐶max (𝛾𝐶max = 0.7), while the (short) majority of the additive genetic variation in plasticity rather
comes from 𝜀0 (𝜄𝜀0 = 0.55). Since the model is non-linear this time, there is a distinction to be made
between 𝑉Add and 𝑉Gen which are not equal any more. So, we can compute 𝑉Gen separately:

post_gen_nl_tpc[["V_Gen"]] <-
map2_dbl(post_nl_tpc[["Theta"]], post_nl_tpc[["G"]],

\(th_, G_) { rn_vgen(theta = th_,
G_theta = G_,
env = vec_env,
shape = gg_shape,
fixed = c(3, 4)) },

.progress = TRUE)
summarise_draws(post_gen_nl_tpc)

# A tibble: 10 × 10
variable mean median sd mad q5 q95 rhat ess_bulk
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Add 0.0495 0.0491 0.00557 0.00552 0.0411 5.94e-2 1.01 994.
2 V_A 0.0224 0.0220 0.00342 0.00355 0.0173 2.84e-2 1.01 936.
3 V_AxE 0.0272 0.0271 0.00250 0.00251 0.0234 3.14e-2 1.01 1024.
4 Gamma_cmax 0.700 0.703 0.0403 0.0412 0.632 7.62e-1 1.00 864.
5 Gamma_xopt 0.303 0.300 0.0405 0.0415 0.241 3.73e-1 1.00 870.
6 Gamma_cma… -0.00298 -0.00204 0.00327 0.00249 -0.00965 2.70e-4 0.999 811.
7 Iota_cmax 0.460 0.461 0.0490 0.0509 0.382 5.40e-1 1.00 873.
8 Iota_xopt 0.548 0.548 0.0494 0.0509 0.469 6.29e-1 1.00 881.
9 Iota_cmax… -0.00806 -0.00638 0.00692 0.00588 -0.0214 -3.32e-4 1.00 834.
10 V_Gen 0.0579 0.0531 0.0417 0.00626 0.0444 6.58e-2 1.01 1017.
# � 1 more variable: ess_tail <dbl>

We can see that𝑉Gen is slightly higher than𝑉Add, because the non-linearity in the model is introduc-
ing non-additive genetic variance in the trait, even though all the genetic variance in the parameters
is additive.

Computing the additive genetic variance decomposition with a normal assumption If we
wanted to match the 𝜋-decomposition assuming a normal distribution, we can also compute the 𝛾-
and 𝜄-decomposition also assuming a normal distribution, using the same wt_env argument¹³:

post_gen_nl_tpc_norm <-
map2(post_nl_tpc[["Theta"]], post_nl_tpc[["G"]],

\(th_, G_) { rn_gen_decomp(theta = th_,
G_theta = G_,
env = vec_env,
shape = gg_shape,
fixed = c(3, 4),

¹³Notet that we have to set the argument width to 8 here, due to a slight numerical instability when it is set to 10. It
is not advisable to reduce this argument too much beyond that limit, as this will start to generate underestimation of
the variance.
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wt_env = dnorm(vec_env),
width = 8) },

.progress = TRUE) |>
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
cbind(post_nl_tpc_info) |>
as_draws_df()

summarise_draws(post_gen_nl_tpc_norm)

# A tibble: 9 × 10
variable mean median sd mad q5 q95 rhat ess_bulk
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Add 0.0547 0.0540 0.00684 0.00670 0.0442 0.0668 1.01 931.
2 V_A 0.0349 0.0345 0.00536 0.00536 0.0269 0.0447 1.01 882.
3 V_AxE 0.0197 0.0197 0.00190 0.00191 0.0169 0.0231 1.01 1058.
4 Gamma_cmax 0.850 0.851 0.0406 0.0415 0.783 0.915 1.00 818.
5 Gamma_xopt 0.217 0.215 0.0354 0.0349 0.164 0.281 1.00 877.
6 Gamma_cmax… -0.0666 -0.0643 0.0330 0.0317 -0.125 -0.0133 0.998 798.
7 Iota_cmax 0.484 0.486 0.0498 0.0508 0.402 0.563 1.00 879.
8 Iota_xopt 0.513 0.512 0.0495 0.0501 0.434 0.595 1.00 883.
9 Iota_cmax_… 0.00271 0.00303 0.00273 0.00213 -0.00209 0.00622 1.00 932.
# � 1 more variable: ess_tail <dbl>

Computing the variance-standardised estimates We have to gather all our estimates to com-
pute the total phenotypic variance in the reaction norm, and use it to standardise our estimates. This
will be done almost exactly as for aggressiveness and the character-state of thermal performance (see
Figure 15), with the main difference being that we need to use 𝑉Gen rather than 𝑉Add:

post_var_nl_tpc <-
bind_draws(post_nl_tpc, post_v_plas_nl_tpc, post_gen_nl_tpc) |>

T2

H2_I

H2

H2_RN

Broad_H2_RN

P2

0.00 0.25 0.50 0.75 1.00

Figure 15: Posterior distribution of the variance-standardised estimates of our variance decomposition of
the reaction norm of thermal performance, based on the non-linear model.
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subset_draws(variable = c("V_Plas", "V_Gen", "V_Add", "V_A", "V_AxE", "V_R")) |>
mutate_variables(V_Tot = V_Plas + V_Gen + V_R)

post_std_nl_tpc <-
post_var_nl_tpc |>
transmute(P2 = V_Plas / V_Tot,

Broad_H2_RN = V_Gen / V_Tot,
H2_RN = V_Add / V_Tot,
H2 = V_A / V_Tot,
H2_I = V_AxE / V_Tot,
T2 = (V_Plas + V_Gen) / V_Tot) |>

cbind(post_nl_tpc_info) |>
as_draws_df()

summarise_draws(post_std_nl_tpc)
mcmc_trace(post_std_nl_tpc)
mcmc_areas(post_std_nl_tpc,

prob = 0.95,
area_method = "scaled height")

# A tibble: 6 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 P2 0.648 0.654 0.0395 0.0278 0.586 0.694 1.01 948. 785.
2 Broad_H2_RN 0.297 0.289 0.0417 0.0283 0.250 0.363 1.01 976. 905.
3 H2_RN 0.265 0.264 0.0261 0.0250 0.223 0.307 1.01 796. 857.
4 H2 0.120 0.119 0.0167 0.0168 0.0935 0.147 1.01 790. 761.
5 H2_I 0.145 0.146 0.0115 0.00973 0.126 0.163 1.01 968. 982.
6 T2 0.945 0.945 0.00490 0.00457 0.937 0.953 1.00 972. 952.

So, most of the total variance is coming from the average shape of the reaction norm (𝑃2RN = 0.65),
and less from the total genetic variation (𝐻2

RN = 0.30). Regarding, more specifically, the additive
genetic variation (ℎ2RN = 0.27), it composed of almost the same amount of environment-blind her-
itability (ℎ2 = 0.12) and heritability from plasticity (ℎ2I = 0.15). As for the character-state, the
reaction norm explains almost all of the total phenotypic variation (𝑇 2

RN = 0.95).

■ 4 Studying reaction norms in a continuous
environment

In this section, we will now assume that phenotypic measurements are performed in a wild popu-
lation of dragons, with heterogeneous micro-environements, especially temperature. Because indi-
viduals move around this environment, it is possible to measure the same individual multiple times,
but at different environmental values.

• 4.1 A quadratic reaction norm

‣ 4.1.1 Data on aggressiveness
Let’s look at the data that are shipped with the Reacnorm package:
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head(dragon_continuous)

Individual Family Temp Aggressiveness Performance
1 Ind_001 Fam_1 0.982 2.190 1.080
2 Ind_001 Fam_1 0.469 2.060 1.290
3 Ind_001 Fam_1 -0.108 1.660 0.868
4 Ind_001 Fam_1 -0.213 1.290 0.786
5 Ind_001 Fam_1 1.160 0.698 1.280
6 Ind_001 Fam_1 1.290 1.180 0.980

We have several measurements on individuals, at different measured temperatures (standardised
to a mean of 0 and a variance of 1), as well as the family they belong to. Since dragons have a
promiscuous reproduction, it can be assumed that all dragons from the same family are half-sibs
(i.e. same mother, different father), with no shared paternity across families (this is a very large
population of dragons).

To get to the additive genetic variance of the parameters, we will thus use a relatedness matrix
based on such information matrix. For this, we will require the Matrix package to construct a block-
diagonal matrix of 0.25 relatedness within families:

library(Matrix)
A_fam <- matrix(0.25, ncol = 10, nrow = 10) + 0.75 * diag(10)
A <- bdiag(rep(list(A_fam), 10))
colnames(A) <- rownames(A) <- sprintf("Ind_%03d", 1:100)

Let’s look a bit closer a the Aggressiveness column. It contains again a measure of aggressiveness
when dragons are exposed to an armoured knight, but this time in the field¹⁴. We can plot its relation
with temperature:

ggplot(dragon_continuous) +
geom_line(aes(x = Temp, y = Aggressiveness, group = Individual, colour = Individual)) +
geom_point(aes(x = Temp, y = Aggressiveness, group = Individual, colour = Individual)) +
theme(legend.position = "none") +
xlab("Temperature") + ylab("Aggressiveness")

Figure 16 shows the result. We can see two things. First, we find again that aggressiveness seems to
follow a quadratic relationship with the temperature. So, we will again use a quadratic model and
should construct a dataset with a new column with the squared value of the temperature:

tbl_dragon_ct <-
dragon_continuous |>
mutate(Temp = Temp - mean(Temp),

Temp_Sq = (Temp - mean(Temp))^2)

Second, values of the environment around 0 (its mean) seem more frequent than extreme values. To
be sure, we can plot the distribution of the environment (see Figure 16 for the result):

ggplot(dragon_continuous) +
geom_histogram(aes(x = Temp))

Since it seems to be normally distributed, this will simplify things for us down the line.

¹⁴Knights are protected within a cage and have their armour, no knight was harmed during the protocol, which was
validated by an ethics committee.
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‣ 4.1.2 Running the quadratic model
Preparing the model The fist thing that we need to decide is the number of iterations to run the
model, and its warm-up phase. We will use the same number of iterations as for the discrete case:

# Number of independent MCMC chains
n_chains <- 4
# Total number of iterations
n_iter <- 3000
# Number of iterations that will be discarded for the warm-up
n_warm <- 1000
# Thinning interval
n_thin <- 1

Then, we can prepare the formula of the model for brms. Here, we will introduce a new feature: we
will provide a matrix of relatedness to our effect, to exactly model the additive genetic variance. This
can be easily done in brms by using the gr() function in the formula, and providing the covariance
matrix in the cov argument, as follows:

form_quad <- brmsformula(Aggressiveness ~ Temp + Temp_Sq +
(1 + Temp + Temp_Sq | gr(Individual, cov = A)))

We just provided the formula for a random-slope animal model! Simple, isn’t it?

Running themodel Themodel is then run, as always, using the brm() function. The only addition
here is that we need to provide our relatedness matrix through the data2 argument of brm():

model_agr <-
brm(formula = form_quad,

data = tbl_dragon_ct,
data2 = list(A = A),
save_pars = save_pars(group = FALSE),
chains = n_chains,
cores = n_chains,
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Figure 16: Left: Dragons aggressiveness according to the temperature at the time of measurement in the
field. Right: Distribution of the temperatures at the time of measurements on the dragons in the field.
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seed = seed,
iter = n_iter,
warmup = n_warm,
thin = n_thin)

summary(model_agr)
plot(model_agr)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Aggressiveness ~ Temp + Temp_Sq + (1 + Temp + Temp_Sq | gr(Individual, cov = A))
Data: tbl_dragon_ct (Number of observations: 1000)
Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;

total post-warmup draws = 8000

Multilevel Hyperparameters:
~Individual (Number of levels: 100)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.29 0.04 0.22 0.36 1.00 3316 5332
sd(Temp) 0.40 0.04 0.33 0.48 1.00 3320 4850
sd(Temp_Sq) 0.27 0.03 0.21 0.33 1.00 2117 3718
cor(Intercept,Temp) -0.21 0.14 -0.47 0.07 1.00 1466 3343
cor(Intercept,Temp_Sq) -0.37 0.15 -0.62 -0.06 1.00 1433 2776
cor(Temp,Temp_Sq) 0.24 0.13 -0.03 0.49 1.00 2114 3721

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 1.49 0.06 1.38 1.60 1.00 4284 5048
Temp 0.48 0.08 0.32 0.63 1.00 2513 3707
Temp_Sq -0.45 0.05 -0.55 -0.34 1.00 2947 4363

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.50 0.01 0.48 0.53 1.00 6279 5802

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Diagonistics using 𝑅 and the effective sample size seem to signal that everything went smoothly, as
does the traces in Figure 17.

Plotting predictions of the model We can superimpose the predictions of the model on the
reaction norm data:

tbl_agr_mod <-
tbl_dragon_ct |>
mutate(Predict = predict(model_agr, re_formula = NA) |>

as_tibble()) |>
unpack(Predict) |>
select(Temp,

Predict = Estimate,
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4.1 A quadratic reaction norm

Figure 17: Plot of the mod_agr model. Parameters starting with “b” are the fixed effects parameters of the
model, and parameters starting with “sd” are the standard deviation of the random effects. The parameter
“sigma” is the residual standard deviation.

Predict_Low = Q2.5,
Predict_Up = Q97.5) |>

summarise(across(starts_with("Predict"), mean),
.by = Temp)

p_rn_agr <-
p_aggr +
geom_ribbon(data = tbl_agr_mod,

mapping = aes(x = Temp, ymin = Predict_Low, ymax = Predict_Up),
alpha = 0.3) +

geom_line(data = tbl_agr_mod,
mapping = aes(x = Temp, y = Predict),
linewidth = 1)

‣ 4.1.3 Decomposing the variance based on point estimates
Setting up an environmental vector We could directly use data collected on the field for the
environment, but this would relatively inefficient, as many values would be close together (and close
to the mean), while more extreme values would be a bit lost outside of the range of values. A more
efficient way will be to prepare a sequence of evenly spaced values from -3 to 3 (remember that
temperature was mean-centered and scaled to a variance of 1), then we will use the dnorm() function
to weight each value according to a normal distribution when calling the Reacnorm functions:

seq_env <- seq(-3, 3, length.out = 200)

We can also prepare a design matrix based on this sequence of environments:

seq_X <- cbind(1, seq_env, seq_env^2)

Extracting the parameters for the model We will need the values of the parameters of the
quadratic model:
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4.1 A quadratic reaction norm

theta_agr <- fixef(model_agr, robust = TRUE)[ , "Estimate"]
names(theta_agr) <- c("a", "b", "c")

As well as the uncertainty in their estimation:

S_theta_agr <- vcov(model_agr)
rownames(S_theta_agr) <- colnames(S_theta_agr) <- c("a", "b", "c")

Finally, we need to extract the G-matrix of the parameters and the residual variance:

G_agr <-
VarCorr(model_agr, robust = TRUE)[["Individual"]][["cov"]][ , "Estimate", ]

rownames(G_agr) <- colnames(G_agr) <- names(theta_agr)
vr_agr <- VarCorr(model_agr, robust = TRUE)[["residual__"]][["sd"]][ , "Estimate"]^2

Computing 𝑉Plas and the 𝜋-decomposition Recalling that when the reaction norm is truly
quadratic and/or the environment is normally distributed (here, we have both), then the 𝜋- and
𝜙-decomposition are identical, and thus, we can use rn_phi_decomp() here for efficiency (and to be
able to correct for the uncertainty in the parameters):

plas_agr <-
rn_phi_decomp(theta = theta_agr,

X = seq_X,
S = S_theta_agr,
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Figure 18: Fit of the quadratic model of the thermal performance from mod_agr, superimposed over the
individual data.
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wt_env = dnorm(seq_env))
plas_agr

V_Plas Phi_a Phi_b Phi_c Phi_a_b Phi_a_c Phi_b_c
1 0.5566937 4.900216e-32 0.3866837 0.6133163 1.174573e-32 2.951315e-32 -1.090162e-17

Note the use of the wt_env argument using dnorm() to weight each environmental value of the se-
quence according to a normal distribution. So, the variance from the slope generates roughly a
third of 𝑉Plas (𝜋Sl = 𝜑𝑏 = 0.39), while the curvature generates two-third of it (𝜋Cv = 𝜑𝑐 = 0.61). Just
to be sure, we can compare with the actual 𝜋-decomposition from rn_pi_decomp():

plas_agr_pi <-
rn_pi_decomp(theta = theta_agr,

V_theta = G_agr,
env = seq_env,
shape = expression(a + b * x + c * x^2),
wt_env = dnorm(seq_env))

plas_agr_pi

V_Plas Pi_Sl Pi_Cv
1 0.5675039 0.3899418 0.6104246

Seems close, but not so close… What is going on? A major difference between the two functions
is that rn_pi_decomp() cannot use the bias correction due to the uncertainty in the estimation of the
parameters (notice that we do not provide S_theta_agr to it). What happen if we do not provide to
rn_phi_decomp()?

rn_phi_decomp(theta = theta_agr,
X = seq_X,
wt_env = dnorm(seq_env))

V_Plas Phi_a Phi_b Phi_c Phi_a_b Phi_a_c Phi_b_c
1 0.5674327 4.814687e-32 0.3895125 0.6104875 1.151877e-32 2.89348e-32 -1.07e-17

Now, that is close enough!

Computing the additive genetic variances and their decomposition This can be done using,
as always, the rn_gen_decomp():

gen_agr <-
rn_gen_decomp(theta = theta_agr,

G_theta = G_agr,
X = seq_X,
wt_env = dnorm(seq_env))

gen_agr

V_Add V_A V_AxE Gamma_a Gamma_b Gamma_c Gamma_a_b Gamma_a_c Gamma_b_c
1 0.3719142 0.09386207 0.2780522 0.223513 0.420248 0.505912 -2.145401e-18 -0.1496729 -1.721787e-18

Iota_a Iota_b Iota_c Iota_a_b Iota_a_c Iota_b_c
1 3.685019e-33 0.5621111 0.4378889 -5.750906e-34 -1.686659e-33 -5.458193e-19

Here, we show that, for aggressiveness, the additive genetic variance arising from plasticity repre-
sents a considerable amount of variance (𝑉A×E = 0.28) compared to the environment-blind additive
genetic variance (𝑉A = 0.09). The additive genetic variance arising from plasticity is mostly driven
by variation in the slope (𝜄𝑏 = 0.56), while the total additive genetic variance in the reaction norm
is mostly driven by the curvature (𝛾𝑐 = 0.5) of the quadratic curve.
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4.1 A quadratic reaction norm

Computing the variance-standardised estimates As for the discrete case, we can compute the
total variance and use it to compute variance-standardised estimates:

v_tot_agr <- plas_agr[["V_Plas"]] + gen_agr[["V_Add"]] + vr_agr
var_agr <-

c(P2 = plas_agr[["V_Plas"]] / v_tot_agr,
h2_RN = gen_agr[["V_Add"]] / v_tot_agr,
h2 = gen_agr[["V_A"]] / v_tot_agr,
h2_I = gen_agr[["V_AxE"]] / v_tot_agr,
T2 = (plas_agr[["V_Plas"]] + gen_agr[["V_Add"]]) / v_tot_agr)

P2 h2_RN h2 h2_I T2
0.47056345 0.31437257 0.07933997 0.23503261 0.78493602

‣ 4.1.4 Decomposing the variance based on posterior distributions
Why use the posterior distribution? The previous section uses computations based on point
estimates, but the best way Bayesian way to do it is rather to apply the functions on the posterior
distribution of the estimates. This also allows for the computation of the uncertainty in the final
estimates.

Getting the posterior distributions of the estimates To obtain the posterior distribution of
the estimates, we need to set the summary argument to FALSE.

theta_post_agr <- fixef(model_agr, summary = FALSE)
colnames(theta_post_agr) <- c("a", "b", "c")
vr_post_agr <-

VarCorr(model_agr, summary = FALSE)[["residual__"]][["sd"]][ , 1]^2
head(theta_post_agr)

variable
draw a b c

1 1.574861 0.5398646 -0.4507398
2 1.507732 0.5543012 -0.4146447
3 1.453584 0.4524352 -0.4491258
4 1.458598 0.4481237 -0.4563230
5 1.471635 0.4477617 -0.4603924
6 1.521630 0.5193325 -0.4411503

For the G-matrix, a bit more work is needed:

G_post_agr <-
VarCorr(model_agr, summary = FALSE)[["Individual"]][["cov"]] |>
# We use apply() to transform the 3-dimensional array into a list
apply(1, \(mat_) { mat_ }, simplify = FALSE) |>
map(\(mat_) { rownames(mat_) <- colnames(mat_) <- c("a", "b", "c"); return(mat_) })

G_post_agr[[1]]

a b c
a 0.07619113 -0.03273076 -0.01878719
b -0.03273076 0.14626823 0.05473105
c -0.01878719 0.05473105 0.07212929

Then, we can format everything as a posterior distribution using the posterior package:
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post_agr <- as_draws_df(theta_post_agr)
post_agr[["G"]] <- G_post_agr
post_agr[["V_R"]] <- vr_post_agr
post_agr <- thin_draws(post_agr, thin = nrow(theta_post_agr) / 1000)
# Keep the iteration/chain info to create new posterior objects
post_agr_info <- select(post_agr, starts_with("."))
post_agr

# A draws_df: 250 iterations, 4 chains, and 6 variables
a b c

1 1.6 0.54 -0.45
2 1.5 0.47 -0.47
3 1.6 0.52 -0.38
4 1.5 0.50 -0.43
5 1.5 0.45 -0.46
6 1.5 0.45 -0.39
7 1.6 0.32 -0.51
8 1.5 0.41 -0.46
9 1.5 0.46 -0.47
10 1.5 0.60 -0.36

G V_R
1 0.076, -0.033, -0.019, -0.033, 0.146, 0.055, -0.019, 0.055, 0.072 0.25
2 0.075, -0.023, -0.033, -0.023, 0.140, 0.024, -0.033, 0.024, 0.087 0.27
3 0.096, -0.061, -0.024, -0.061, 0.220, 0.040, -0.024, 0.040, 0.096 0.26
4 0.08116, -0.01868, -0.03615, -0.01868, 0.20498, 0.00013, -0.03615, 0.00013, 0.07168 0.27
5 0.059, -0.018, -0.021, -0.018, 0.137, 0.012, -0.021, 0.012, 0.071 0.24
6 0.094, -0.039, -0.048, -0.039, 0.190, 0.047, -0.048, 0.047, 0.079 0.24
7 0.051, -0.022, -0.017, -0.022, 0.167, 0.018, -0.017, 0.018, 0.052 0.26
8 0.0567, -0.0041, -0.0102, -0.0041, 0.1683, 0.0238, -0.0102, 0.0238, 0.0613 0.27
9 0.076, -0.016, -0.018, -0.016, 0.158, 0.038, -0.018, 0.038, 0.072 0.26
10 0.078, -0.026, -0.034, -0.026, 0.125, 0.029, -0.034, 0.029, 0.060 0.25

theta
1 1.57, 0.54, -0.45
2 1.47, 0.47, -0.47
3 1.61, 0.52, -0.38
4 1.52, 0.50, -0.43
5 1.46, 0.45, -0.46
6 1.45, 0.45, -0.39
7 1.57, 0.32, -0.51
8 1.53, 0.41, -0.46
9 1.50, 0.46, -0.47
10 1.45, 0.60, -0.36
# ... with 990 more draws
# ... hidden reserved variables {'.chain', '.iteration', '.draw'}

Computing 𝑉Plas and its 𝜋-decomposition To apply rn_phi_decomp() to the posterior distribu-
tion of the parameters, we will use the map() function to apply it to the theta column of post_agr
(then some formatting is involved):

post_plas_agr <-
map(post_agr[["theta"]],
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\(th_) { rn_phi_decomp(theta = th_,
X = seq_X,
S = S_theta_agr,
wt_env = dnorm(seq_env)) },

.progress = TRUE) |>
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
# Transform into a "draws" object using posterior package
cbind(post_agr_info) |>
as_draws_df()

summarise_draws(post_plas_agr)
mcmc_trace(post_plas_agr)
mcmc_areas(post_plas_agr,

regex_pars = "^V",
prob = 0.95,
area_method = "scaled height") /

mcmc_areas(post_plas_agr,
regex_pars = "^[^V]",
prob = 0.95,
area_method = "scaled height") +

plot_layout(heights = c(1, 2))

# A tibble: 3 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Plas 0.564 0.558 0.0998 0.101 0.411 0.736 1.00 1105. 963.
2 Phi_b 0.391 0.391 0.103 0.103 0.229 0.564 1.00 816. 932.
3 Phi_c 0.609 0.609 0.103 0.103 0.436 0.771 1.00 816. 932.

We obtain numbers that are roughly comparable to when we used the point estimates, but this time,
we have information about the posterior distribution of those parameters (see Figure 25).

Computing the additive genetic variances and their decomposition Then, we can do the
same for rn_gen_decomp(), only this time, we need to provide the posterior distibution of theG-matrix
as well, so we need to use map2() function, which allows for using 2 arguments:

post_gen_agr <-
map2(post_agr[["theta"]], post_agr[["G"]],
\(th_, G_) { rn_gen_decomp(theta = th_,

G_theta = G_,
X = seq_X,
wt_env = dnorm(seq_env)) },

.progress = TRUE) |>
bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
cbind(post_agr_info) |>
as_draws_df()

summarise_draws(post_gen_agr)
mcmc_trace(post_gen_agr)
mcmc_areas(post_gen_agr,

regex_pars = "^V",
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Figure 19: Posterior distribution of the variance decomposition of the reaction norm of aggressiveness, based
on a quadratic model.

prob = 0.95,
area_method = "scaled height") /

mcmc_areas(post_gen_agr,
regex_pars = "^[^V]",
prob = 0.95,
area_method = "scaled height") +

plot_layout(heights = c(3, 6))

# A tibble: 9 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Add 0.378 0.375 0.0527 0.0519 0.300 0.464 1.00 1036. 902.
2 V_A 0.0949 0.0926 0.0212 0.0203 0.0658 0.133 1.01 923. 849.
3 V_AxE 0.283 0.280 0.0440 0.0423 0.218 0.360 0.999 1031. 803.
4 Gamma_a 0.227 0.221 0.0545 0.0526 0.150 0.328 1.00 841. 969.
5 Gamma_b 0.423 0.424 0.0601 0.0582 0.324 0.525 1.01 998. 894.
6 Gamma_c 0.503 0.500 0.0897 0.0938 0.365 0.654 1.00 1045. 836.
7 Gamma_a_c -0.153 -0.150 0.0760 0.0755 -0.286 -0.0363 1.00 880. 883.
8 Iota_b 0.565 0.569 0.0726 0.0727 0.440 0.680 1.01 1062. 1016.
9 Iota_c 0.435 0.431 0.0726 0.0727 0.320 0.560 1.01 1062. 1016.

Again, the number are close to what we obtained with the posterior estimates, but with the uncer-
tainty around them (see Figure 25).

Computing the total variance and the variance-standardised estimates We can obtain the
total variance using the posterior package:
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post_var_agr <-
bind_draws(post_agr, post_plas_agr, post_gen_agr) |>
subset_draws(variable = c("V_Plas", "V_Add", "V_A", "V_AxE", "V_R")) |>
mutate_variables(V_Tot = V_Plas + V_Add + V_R)

Now, we have access to the posterior distribution of the total variance in the V_Tot column. Now,
we can use it to compute the variance-standardised estimates:

post_std_agr <-
post_var_agr |>
transmute(P2 = V_Plas / V_Tot,

H2_RN = V_Add / V_Tot,
H2 = V_A / V_Tot,
H2_I = V_AxE / V_Tot,
T2 = (V_Plas + V_Add) / V_Tot) |>

cbind(post_agr_info) |>
as_draws_df()

summarise_draws(post_std_agr)
mcmc_trace(post_std_agr)
mcmc_areas(post_std_agr,

prob = 0.95,
area_method = "scaled height")

# A tibble: 5 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 P2 0.468 0.470 0.0483 0.0475 0.386 0.545 1.00 1117. 1031.
2 H2_RN 0.317 0.314 0.0401 0.0390 0.257 0.387 1.00 1112. 955.
3 H2 0.0795 0.0779 0.0171 0.0161 0.0549 0.111 1.00 947. 847.
4 H2_I 0.237 0.235 0.0341 0.0341 0.184 0.296 1.00 1070. 880.
5 T2 0.785 0.785 0.0228 0.0222 0.747 0.820 1.00 1011. 913.

See Figure 25 for the posterior distribution.

• 4.2 A non-linear reaction norm

‣ 4.2.1 Data on thermal performance
There is a column in the dataset that we did not discussed:

head(dragon_continuous)

Individual Family Temp Aggressiveness Performance
1 Ind_001 Fam_1 0.982 2.190 1.080
2 Ind_001 Fam_1 0.469 2.060 1.290
3 Ind_001 Fam_1 -0.108 1.660 0.868
4 Ind_001 Fam_1 -0.213 1.290 0.786
5 Ind_001 Fam_1 1.160 0.698 1.280
6 Ind_001 Fam_1 1.290 1.180 0.980

We also have data on locomotive thermal performance, that was measured in the field using a “trans-
portable” field corridor with a dummy princess at the end to motivate dragons to run. If we have
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Figure 20: Posterior distribution of the variance-standardised estimates of our variance decomposition of
the reaction norm of aggressiveness, based on a quadratic model.

a look at the data, we see we recover the same kind of shape than for the experimental case above
(see Figure 21):

p_tpc <-
ggplot(tbl_dragon_ct) +
geom_line(aes(x = Temp, y = Performance, group = Individual, colour = Individual)) +
geom_point(aes(x = Temp, y = Performance, group = Individual, colour = Individual)) +
theme(legend.position = "none") +
xlab("Temperature") + ylab("Performance")
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Figure 21: Dragons thermal performance, measured as locomotive performance, according to the tempera-
ture at the location of measure in the field

So, we will again use Equation 1 to model its shape.
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‣ 4.2.2 Running the non-linear model
Preparing the model We need to set up the non-linear formula for the model, as we did for the
experimental setup in subsubsection 3.3.1, only this time we provide the relatedness matrix A with
the gr() function:

form_nl <- brmsformula(Performance ~ cmax * exp(
- exp(rho * (Temp - xopt) - 6) - # Gompertz part

sigmagaus * (Temp - xopt)^2 # Gaussian part
),

cmax + xopt ~ 1 + (1 | ID1 | gr(Individual, cov = A)),
rho + sigmagaus ~ 1,
nl = TRUE)

We will also re-use the same priors and initial values as in subsubsection 3.3.1:

prior_nl <-
prior(uniform(0, 100), nlpar = "cmax", lb = 0, ub = 100) +
prior(uniform(0, 100), nlpar = "rho", lb = 0, ub = 100) +
prior(uniform(0, 10), nlpar = "sigmagaus", lb = 0, ub = 10)

inits <- rep(list(list(b_cmax = array(data = 1),
b_xopt = array(data = 0.9),
b_rho = array(data = 8),
b_sigmagaus = array(data = 0.4))), 4)

Given that non-linear models are bit more auto-correlated, we will run the model for a little longer:

# Total number of iterations
n_iter_nl <- 7000
# Number of iterations that will be discarded for the warm-up
n_warm_nl <- 1000
# Thinning interval
n_thin_nl <- 1

Running the model Now, we can run the model:

model_nl_tpc <-
brm(formula = form_nl,

data = tbl_dragon_ct,
data2 = list(A = A),
save_pars = save_pars(group = FALSE),
chains = n_chains,
cores = n_chains,
seed = seed,
init = inits,
prior = prior_nl,
iter = n_iter_nl,
warmup = n_warm_nl,
thin = n_thin_nl)

summary(model_nl_tpc)
plot(model_nl_tpc)

Family: gaussian
Links: mu = identity; sigma = identity
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Formula: Performance ~ cmax * exp(-exp(rho * (Temp - xopt) - 6) - sigmagaus * (Temp - xopt)^2)
cmax ~ 1 + (1 | ID1 | gr(Individual, cov = A))
xopt ~ 1 + (1 | ID1 | gr(Individual, cov = A))
rho ~ 1
sigmagaus ~ 1

Data: tbl_dragon_ct (Number of observations: 1000)
Draws: 4 chains, each with iter = 7000; warmup = 1000; thin = 1;

total post-warmup draws = 24000

Multilevel Hyperparameters:
~Individual (Number of levels: 100)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(cmax_Intercept) 0.34 0.03 0.30 0.40 1.00 2353 4802
sd(xopt_Intercept) 0.03 0.01 0.01 0.05 1.00 4643 3856
cor(cmax_Intercept,xopt_Intercept) -0.23 0.29 -0.76 0.40 1.00 14649 8867

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

cmax_Intercept 0.97 0.06 0.84 1.09 1.00 1226 2574
xopt_Intercept 0.90 0.02 0.86 0.94 1.00 12702 15894
rho_Intercept 8.17 0.30 7.62 8.78 1.00 13466 15788
sigmagaus_Intercept 0.40 0.01 0.37 0.42 1.00 14572 17473

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.10 0.00 0.09 0.10 1.00 21911 16569

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Diagnostics seem to be OK, as do a graphical check of the traces in Figure 22. We can also plot the
predictions of the model atop the raw data (see Figure 13):

tbl_tpc_mod <-
tbl_dragon_ct |>
mutate(Predict = predict(model_nl_tpc, re_formula = NA) |>

as_tibble()) |>
unpack(Predict) |>
select(Temp,

Predict = Estimate,
Predict_Low = Q2.5,
Predict_Up = Q97.5) |>

summarise(across(starts_with("Predict"), mean),
.by = Temp)

p_rn_tpc <-
p_tpc +
geom_ribbon(data = tbl_tpc_mod,

mapping = aes(x = Temp, ymin = Predict_Low, ymax = Predict_Up),
alpha = 0.3) +
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4.2 A non-linear reaction norm

Figure 22: Plot of the mod_nl_tpc model. Parameters starting with “b” are the fixed effects of the non-linear
parameters of the model, and parameters starting with “sd” are the standard deviation of the random effects
of the non-linear parameters. The parameter “sigma” is the residual standard deviation.

geom_line(data = tbl_tpc_mod,
mapping = aes(x = Temp, y = Predict),
linewidth = 1)

‣ 4.2.3 Decomposing the variance based on the posterior distribution
Getting the parameters We can get the posterior distribution of the parameters as for the previ-
ous models:

theta_post_nl_tpc <- fixef(model_nl_tpc, summary = FALSE)
colnames(theta_post_nl_tpc) <- str_remove(colnames(theta_post_nl_tpc), "_Intercept")
G_post_nl_tpc <-

VarCorr(model_nl_tpc, summary = FALSE)[["Individual"]][["cov"]] |>
apply(1, \(mat_) { mat_ }, simplify = FALSE) |>
map(\(mat_) {

rownames(mat_) <- colnames(mat_) <- str_remove(rownames(mat_), "_Intercept"); return(mat_)
})

vr_post_nl_tpc <-
VarCorr(model_nl_tpc, summary = FALSE)[["residual__"]][["sd"]][ , 1]^2

And then, we can subsample the iterations to speed up computation:

post_nl_tpc <- as_draws_df(theta_post_nl_tpc)
post_nl_tpc[["G"]] <- G_post_nl_tpc
post_nl_tpc[["Theta"]] <-

post_nl_tpc |>
select(cmax:sigmagaus) |>
apply(1, \(vec_) { vec_ }, simplify = FALSE)

post_nl_tpc[["V_R"]] <- vr_post_nl_tpc
post_nl_tpc <- thin_draws(post_nl_tpc, thin = nrow(theta_post_nl_tpc) / 1000)
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Figure 23: Thermal performance individual data, with the non-linear reaction norm predicted by the
mod_tpc_nl model.

# Keep the iteration/chain info to create new posterior objects
post_nl_tpc_info <- select(post_nl_tpc, starts_with("."))

The last thing we will require is the expression for the shape of reaction norm, using the same
parameter names as in our statistical model and a sequence of environments:

gg_shape <- expression(
cmax * exp(

- exp(rho * (x - xopt) - 6) -
sigmagaus * (x - xopt)^2

)
)
seq_env <- seq(-3, 3, length.out = 200)

Computing𝑉Plas and the 𝜋-decomposition We can directly compute the 𝜋-decomposition here,
because the environment can readily be assumed to be normally distributed. Note that, since the
model is non-linear, we cannot compute the 𝜑-decomposition (or use rn_phi_decomp()). This can take
some time, so we will speed things up by parallelising the process using the furrr package, which
offers future_* parallelised version of purrr’s fuction. We need first to set up this parallelisation. The
following code should work in most settings:

library(furrr)
ncores <- min(parallel::detectCores() - 2, 10)
options(mc.cores = ncores)
plan(multisession) # plan(multicore) is more efficient for people not on Windows
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Now, we just need to call future_map2() instead of map2(), and R will take care of the parallelisation
for us:

post_pi_nl_tpc <-
future_map2(post_nl_tpc[["Theta"]], post_nl_tpc[["G"]],

\(th_, G_) { rn_pi_decomp(theta = th_,
V_theta = G_,
env = seq_env,
shape = gg_shape,
fixed = c(3, 4),
wt_env = dnorm(seq_env)) },

.options=furrr_options(seed = TRUE),

.progress = TRUE) |>
bind_rows() |>
cbind(post_nl_tpc_info) |>
as_draws_df()

summarise_draws(post_pi_nl_tpc)
mcmc_trace(post_pi_nl_tpc)
mcmc_areas(post_pi_nl_tpc,

regex_pars = "^V",
prob = 0.95,
area_method = "scaled height") /

mcmc_areas(post_pi_nl_tpc,
regex_pars = "^[^V]",
prob = 0.95,
area_method = "scaled height") +

plot_layout(heights = c(1, 2))

# A tibble: 3 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Plas 0.0989 0.0992 0.0138 0.0133 0.0777 0.121 1.00 832. 795.
2 Pi_Sl 0.284 0.285 0.00754 0.00697 0.272 0.297 0.999 973. 638.
3 Pi_Cv 0.310 0.310 0.00726 0.00674 0.299 0.322 1.00 997. 908.

Note that we once again used wt_env to weight environmental values according to a normal distri-
bution, and fixed to state to the fonction that the 3rd (rho) and 4th (sigmagaus) arguments were not
allowed to genetically vary. These results show slightly more variance in the average reaction norm
coming from the curvature (𝜋Cv = 0.31) compared to the contribution of the slope (𝜋Sl = 0.28).

Computing the additive genetic variances and their decomposition We will again paral-
lelise the computation of the additive genetic variances using furrr:

post_gen_nl_tpc <-
future_map2(post_nl_tpc[["Theta"]], post_nl_tpc[["G"]],

\(th_, G_) { rn_gen_decomp(theta = th_,
G_theta = G_,
env = seq_env,
shape = gg_shape,
fixed = c(3, 4)) },

.options=furrr_options(seed = TRUE),

.progress = TRUE) |>
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Figure 24: Posterior distribution of the variance decomposition of the reaction norm of aggressiveness, based
on a quadratic model.

bind_rows() |>
select(where(\(col_) { abs(mean(col_)) > 10^-5 })) |>
cbind(post_nl_tpc_info) |>
as_draws_df()

Since the model is non-linear, the total additive genetic variance in the reaction norm (𝑉Add) is not
equal to the total (broad-sense) genetic variance in the reaction norm (𝑉Gen). So, to be thorough, we
need to add the computation of this 𝑉Gen:

post_gen_nl_tpc[["V_Gen"]] <-
future_map2_dbl(post_nl_tpc[["Theta"]], post_nl_tpc[["G"]],

\(th_, G_) { rn_vgen(theta = th_,
G_theta = G_,
env = seq_env,
shape = gg_shape,
fixed = c(3, 4),
width = 8) },

.options=furrr_options(seed = TRUE),

.progress = TRUE)

Now, we can look at the posterior distribution for all components:

summarise_draws(post_gen_nl_tpc)
mcmc_trace(post_gen_nl_tpc)
mcmc_areas(post_gen_nl_tpc,

regex_pars = "^V",
prob = 0.95,
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area_method = "scaled height") /
mcmc_areas(post_gen_nl_tpc,

regex_pars = "^[^V]",
prob = 0.95,
area_method = "scaled height") +

plot_layout(heights = c(3, 6))

# A tibble: 10 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 V_Add 0.0301 0.0297 0.00476 0.00444 0.0234 3.82e-2 0.999 1087. 955.
2 V_A 0.0134 0.0133 0.00216 0.00199 0.0104 1.71e-2 0.999 1094. 955.
3 V_AxE 0.0166 0.0164 0.00261 0.00244 0.0130 2.10e-2 0.999 1081. 994.
4 Gamma_cmax 0.990 0.991 0.00701 0.00655 0.977 9.99e-1 0.999 1102. 944.
5 Gamma_xopt 0.0102 0.00922 0.00715 0.00661 0.000682 2.34e-2 0.999 1100. 944.
6 Gamma_cmax_xopt -0.000307 -0.000161 0.000428 0.000216 -0.00121 -1.04e-6 1.00 1031. 1038.
7 Iota_cmax 0.982 0.984 0.0125 0.0117 0.959 9.99e-1 0.999 1100. 932.
8 Iota_xopt 0.0184 0.0167 0.0127 0.0118 0.00125 4.16e-2 0.999 1100. 941.
9 Iota_cmax_xopt -0.000514 -0.000263 0.000724 0.000358 -0.00208 -2.08e-7 1.00 1042. 1036.
10 V_Gen 0.0317 0.0305 0.00798 0.00488 0.0240 4.13e-2 1.00 1002. 941.

Clearly, whether we look at the contribution of the parameter𝐶 to the total additive genetic variance
(𝛾𝐶 = 0.99) or to the additive genetic variance arising from plasticity (𝜄𝐶 = 0.98), its importance is
extremely strong in this case.

Computing the total variance and the variance-standardised estimates We can compute
the total variance and the variance-standardised estimates as in the quadratic case:

post_var_nl_tpc <-
bind_draws(post_nl_tpc, post_pi_nl_tpc, post_gen_nl_tpc) |>
subset_draws(variable = c("V_Plas", "V_Gen", "V_Add", "V_A", "V_AxE", "V_R")) |>
mutate_variables(V_Tot = V_Plas + V_Gen + V_R)

post_std_nl_tpc <-
post_var_nl_tpc |>
transmute(P2 = V_Plas / V_Tot,

Broad_H2_RN = V_Gen / V_Tot,
H2_RN = V_Add / V_Tot,
H2 = V_A / V_Tot,
H2_I = V_AxE / V_Tot,
T2 = (V_Plas + V_Gen) / V_Tot) |>

cbind(post_nl_tpc_info) |>
as_draws_df()

summarise_draws(post_std_nl_tpc)
mcmc_trace(post_std_nl_tpc)
mcmc_areas(post_std_nl_tpc,

prob = 0.95,
area_method = "scaled height")

# A tibble: 6 × 10
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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1 P2 0.703 0.710 0.0532 0.0375 0.632 0.762 0.999 970. 884.
2 Broad_H2_RN 0.226 0.218 0.0506 0.0358 0.172 0.292 0.999 1000. 884.
3 H2_RN 0.215 0.212 0.0356 0.0328 0.166 0.276 1.00 1074. 954.
4 H2 0.0961 0.0945 0.0162 0.0149 0.0738 0.124 1.00 1071. 954.
5 H2_I 0.119 0.117 0.0195 0.0177 0.0919 0.152 1.00 1076. 954.
6 T2 0.929 0.930 0.00860 0.00799 0.915 0.942 1.00 850. 806.

In this case, most of the variance comes from the average shape of reaction norm (𝑃2RN = 0.7), and
the reaction norm explains most of the variation in the phenotypic trait (𝑇 2

RN = 0.93). The difference
between the broad- and narrow-sense heritabilities (𝐻2

RN = 0.23 v. ℎ2RN = 0.22) is not strong. The
heritability in the reaction norm is roughly split into the environment-blind heritability (ℎ2 = 0.10)
and the heritability from plasticity (ℎ2I = 0.12).
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Figure 25: Posterior distribution of the variance-standardised estimates of our variance decomposition of
the reaction norm of TPC, based on a non-linear model.
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