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1 Summary and aim of the package

The QGglmm package is an R implementation of the framework developed by de Villemereuil

et al. (2016) to compute quantitative genetics parameters on the observed data scale after a

Generalised Linear Mixed Model (GLMM) analysis. It allows for the computation of the mean,

variances and heritability on the observed data scale, as well as for evolutionary predictions if

measures of fitness gradient are provided. For a comprehensive description of the framework,

please read de Villemereuil et al. (2016).

The package is meant to be used after an inference from a GLMM. As a consequence,

the package does not perform any inference. To infer genetic additive variances from your

experimental design, please refer to packages or software such as MCMCglmm or ASreml.

This “How-to” is destined for people having performed a quantitative analysis through a

GLMM and wanting to use QGglmm to obtain quantitative genetic parameters (e.g. additive

genetic variance, heritability or G matrix) on the observed data scale rather than the latent

scale (see below for a definition of the scales). It also explain how to use the package to perform

evolutionary predictions if fitness information is available.

2 Overview of the theory

2.1 Quantitative genetics and linear mixed models

Nowadays, the reference kind of model for performing quantitative genetics analysis is the linear

mixed model (LMM), and especially a particular form of called the animal model (Henderson,

1950, 1976; Kruuk, 2004), whereby the additive genetic variance of the trait is estimated

using relatedness information between individuals. Mathematically, a linear mixed model of a

phenotypic trait z1 is of the following shape:

z = 𝜇 + Xb + Zaa + Z1u1 + ... + Z𝑘uk + e, (1)

where 𝜇 is the intercept of the model, X is called the design matrix and contains the fixed effect

co-variates and b contains the estimated parameters for the fixed effects. The random effects

are separated between the additive genetic component Zaa and other possible random effects

Z1u1 + ... + Z𝑘uk. Finally, e is the residual component (i.e. the “error” term).

1z is a vector containing the trait value for each individual, hence its length is equal to the number of
individuals in the study.
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There are several key assumptions in a LMM, among which are:

� The residual e follows a Normal distribution with independent effects between individuals:

e ∼ N(0, I𝑉R) (2)

where I is the identity matrix and 𝑉R is the residual variance.

� The additive genetic component (the “breeding values”) are normally distributed with a

variance-covariance matrix A being composed of the relatedness between individuals:

a ∼ 𝑁
(
0,A𝑉A,ℓ

)
, (3)

where 𝑉A,ℓ is the additive genetic variance.

� All random effects are independent from each other and from the fixed effects.

This model is very well supported by quantitative genetics. According to Fisher (1918)’s

infinitesimal model, breeding values do indeed follows Eq. 3. Also, that the combined result of

genetical and environmental effects follows a Normal distribution is a classical assumptions in

quantitative genetics. Because of that, most tools and theory in quantitative genetics assume

this kind of distribution.

2.2 Generalised linear mixed model

It happens often that phenotypic traits cannot be modelled by a normally distributed random

error. This is especially the case for count, categorical or binary data. In such cases, one has to

rely on Generalised Linear Mixed Models (GLMM) rather than LMM. GLMM allows for the use

of many different kind of distributions by using a hierarchical structure going from a normally

distributed (hypothetical) latent trait to the observed data.

This structure consists of three “scales” depicted in Fig. 1 and which can be written using the

following equations:

ℓ = 𝜇 + Xb + Zaa + Z1u1 + ... + Z𝑘uk + o, (4a)

𝜼 = 𝑔−1(ℓ), (4b)

z ∼ D(𝜼, 𝜽 ), (4c)

Eq. 4a refers to the latent trait ℓ.

By comparing it to Eq. 1, we can see that the same assumptions are made for ℓ as in any

LMM. To reflect the fact that the “error” on the latent trait is not the residual error of the model,
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we changed the notation of the residual e to o. The term o is still normally distributed and

stands for the additive over-dispersion of the model (Nakagawa & Schielzeth, 2010). Accordingly,

we will note the variance associated to o as 𝑉O.
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Figure 1: The three scales of
the Generalised Linear Mixed
Model (here using Poisson with a
log link function as an example).
The error terms are normally dis-
tributed on the latent scale, but
follows a Poisson distribution on
the observed data scale (condi-
tionnally on the latent scale).

In de Villemereuil et al. (2016), Eq. 4b is said to refer to the

“expected data scale”. This is because the term 𝜼 is the individual

expectation around which the observed data are realised (see

example below). The transition from the latent scale to the

expected data scale is preformed by the inverse of the link-function

𝑔. The link function is“mapping”the variations on the latent scale

to variations compatible for the distribution used. For example,

whereas the latent trait varies between −∞ to ∞, a binomial

distribution can only use values between 0 and 1, hence the use of

logit or probit link-function which match these input and output

realms.

Finally, Eq. 4c models the “observed data scale” by adding, to the

expectation 𝜼, an error term from a given non-Normal distribution

(here noted D), which can accept additional parameters 𝜽 .

It is very important to realise that most (and very often, all) pa-

rameters are inferred on the latent scale, and not on the observed

data scale. All parameters commonly interpreted in quantitative

genetics (population mean 𝜇, additive genetic variance 𝑉A,ℓ and

all other variance components) are thus related to a hypothetical

latent trait, and hence not directly to the phenotypic trait of

interest (see more about this in section 2.4).

2.3 An illustrative example

All the statistical soup above might seem difficult to digest to

some readers. In order to best explain some of these technical

facts, we will use an illustrative example directly simulated in R.

This example will use a Poisson with a log link-function GLMM.

Let’s consider a very simple model for now, with no fixed effects and no random effects except

for the additive genetic one. Following Eqs. 4, we can write the model as:

ℓ = 𝜇 + Zaa + o, (5a)
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𝜼 = exp(ℓ), (5b)

z ∼ P(𝜼), (5c)

Note that, because we use the inverse of the log link-function, we use, well, the inverse of the

logarithm, which is an exponential. Note that a Poisson can only use positive real number as

input and that exponential only yields positive real numbers, so the “matching” performed by

the link-function is quite obvious here.
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Figure 2: Distribution of the simulated
latent trait.

So, our model has three parameters: the intercept 𝜇,

the additive genetic variance𝑉A,ℓ and the over-dispersion

variance 𝑉O. Let’s define some values for them:

# Value for the intercept mu

mu <- 0

# Additive genetic variance

Va <- 0.3

# Over-dispersion variance

Vo <- 0.3

# Number of individuals

N <- 1000

Using these parameters, we can simulate the latent trait:

l <- mu + rnorm(N, 0, sqrt(Va)) + rnorm(N, 0, sqrt(Vo))

The distribution of the simulated latent trait is illustrated in Fig. 22.

Now that we have constructed our latent trait, we can use the inverse of the link-function to

compute the values on the expected data scale (a.k.a. 𝜼):

eta <- exp(l)

Yes, it’s that simple. The distribution of 𝜼 is illustrated in Fig. 3. From this graph and the fact

that we are simply taking the exponential of the latent trait, we can see that two things are

going to happen: much of the values are going to be low (say between 0 and 1), whereas a few

(corresponding to the upper tail of the Normal distribution) are going to yield large values (in

Fig. 3, we see the extreme is just above 20). This is all good and well, but doesn’t quite really

illustrate what 𝜼 is biologically. The best way to see this is to compute the observed phenotypic

trait from it.

2Note that because we do not have fixed effects, the distribution is clearly Gaussian, but when fixed effects
are included, there is no expectation for the distribution of ℓ to be Gaussian (only the residual is, i.e. when all
effects have been “removed”).

5



Distribution on the expected data scale
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Figure 3: Distribution of the simulated 𝜼
values.

The observed phenotypic trait z is the realisation

around the individual expectation 𝜼 according to the

chosen distribution D. In our case, what this means

is that for individual 𝑖, its phenotype 𝑧𝑖 is drawn from

a Poisson distribution with a mean (i.e. the famous 𝜆

parameter of the Poisson distribution) 𝜂𝑖 :

z <- rpois(N, lambda = eta)

Now, the distribution of our simulated phenotypic trait

is illustrated in Fig. 4. We can see that this distribution

is heavily non-Gaussian3, with a lot of 0 and a few large

values (again up to slightly above 20).

Distribution on the observed data scale
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Figure 4: Distribution of the simulated z
values.

To fully realise the meaning of the different scales, it

can be interesting to “follow” the values for a particular

individual, say the 101th. First, we can have a look at

its latent value:

l[101]

eta[101]

z[101]

1.225813

3.406933

4

So, this individual have a latent trait value of 1.23.

This value can be directly compared to our value of the

population latent mean 𝜇, which was 0. This individual’s latent component tends thus toward

bigger values than the average. As a result, its expected value is of 3.4. Let’s say that our

trait is the mating success of a population of male. This means that this individual is expected,

according to its latent (i.e. in part, according to its genetics), to mate with 3.4. Now, we all

know that it’s impossible to mate with 3.4 females: we can only observe integer values of mating

success. This is the observed value, which, in our case was 4, but could have been anything e.g.

between 1 and 7:

qpois(0.05, lambda = 3.4)

qpois(0.95, lambda = 3.4)

3At this point, we need to remind the reader that we are authorised to look at the overall shape of the
different scales directly because our simulations did not have any fixed effects. A variable can totally have a
weird distribution, but a normally distributed error term if the correct covariate is used as a fixed effect.
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It is thus important to realise that the observed values can be quite different from the expected

ones and, more importantly, that the noise assumed on this latter part of the model can be very

large. We will come to this latter, when mentioning the different values of the heritability.

This whole simulation is basically the process assumed by a GLMM. Latent values are

assigned, according to all predictors (here only an additive genetic one), to all individuals, or

observations if they are repeated measurements. These latent values are transformed, using the

inverse-link-function into expected values, around which observed values are drawn. The main

difference when performing a statistical inference with a GLMM is that only observed values

are known, the rest is entirely inferred by the model.

It would be advisable, for anyone using a GLMM, to toy around with these kind of simulations

(changing the parameters and distribution to fit the case at hand), in order to get familiar with

the implications of some parameters values. Most of the time, indeed, change in a parameter

value will have quite different consequences on the data scale compared to what one can expect

in a LMM. This is illustrated from the simulation above. Note that the latent mean is 0, yet all

simulated data have a positive value. Note also the low values for the latent variances, whereas

the simulated data have a much larger variance.

2.4 Quantitative genetics and GLMM

How is the use of GLMM justified for quantitative genetics analysis? What should we do

differently than what we are doing when using plain LMM? Many people think that GLMM

are just “LMM with a different distribution”, but we just saw that the reality is more complex

than that, especially because the model has now three different scales, each with a particular

behaviour. Much of what will be mentioned here comes from de Villemereuil et al. (2016), so

we will just summarise some issues and try to keep it simple.

The first thing to mention is why we need the latent trait to be Gaussian (or a latent trait

at all...). This stems from models underlying quantitative genetics, especially Fisher (1918)’s

infinitesimal model: the results of a large number of additive effects, each with a small effect,

will result in a normally distributed genetic component. A same line of reasoning (e.g. using the

central-limit theorem) allows us to assume the same kind of distribution for the environmental

effects. Hence, more than justified, it is needed4 that at some point, something is normally

distributed. We simply call this something “latent trait”.

4Well, obviously, this is assuming that the infinitesimal model is a good approximation of the reality.
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A second thing to mention is that GLMM are in essence very noisy models. There are three

main sources of noise. A first source is the latter part of the model where observed values

are drawn around the expected values following the distribution D. This is the actual “error

process” of the model. One thing is very important to note with this source of noise: contrary

to the normally-distributed noise of a LMM, the level of noise almost always depends on the

actual expected value. Indeed, the variance of a Poisson is equal to the mean, the variance of a

binomial distribution depends only on the mean, etc... This means that we assume that a part

of the phenotypic variance is irreducible: there’s always be some variance, depending on the

value of the trait.

The second source is the inverse-link-function. It is not creating noise (it’s a function, not a

statistical distribution after all), but it can amplify the noise from the latent scale to a great

extent. Think about the Poisson-log model above: we take the exponential of the latent scale.

This means that values that are close on the latent scale, say 1, 2 and 3, will give respectively

2.7, 7.4 and 20 on the expected data scale: large values become even larger!

Finally, the last source of noise is the over-dispersion variance present in the latent scale. Despite

GLMMs being somewhat noisy already, it is frequent that this variance is required for a good

model fit5.

Why is it important that GLMM are noisy in the context of quantitative genetics? Well, this

means that phenotypic variance on the observed data scale tends to be large, especially when

compared to the original variance on the latent scale. The direct consequence of this is that

heritabilities inferred on the observed data scale are expected to be rather small ! For example,

because GLMMs always assume environmental noise from the distribution D, heritability on

the observed data scale can never reach a maximum of 1.

A third and last thing to mention is something quite important from a quantitative genetics

perspective: the link-function is almost never linear! Why is that important? Because it breaks

the additivity of the genetic effects to some degree. Even if only additive effects are assumed on

the latent scale, the result on the observed data scale is a mix of additive and non-additive effects

(simply because it went through the inverse-link-function!). When computing the heritability,

we want to extract only the additive part, which is all what QGglmm is about. But this has

further consequences. Narrow-sense heritability is nothing like repeatability6 when they are

computed on the observed data scale. This means that some of the computations and advice

available in Nakagawa & Schielzeth (2010) are not applicable to narrow-sense heritability on the

observed scale. However, broad-sense heritability (i.e. including the non-additive effects) can

5Sometimes, the over-dispersion variance is also required for the method to work: it is the case for e.g.
MCMCglmm

6Heritability is sometimes considered as an “additive genetic repeatability” and they share most of their
features when assuming a LMM. Especially, they are both some kind of statistics called intra-class correlation
coefficients.
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be computed as a repeatability-like estimate (a.k.a. intra-class correlation coefficients, ICC).

QGglmm also provides a way to compute ICCs, even for non-genetic components, see section

5.2.

3 The framework behind QGglmm

Most of the content of this section is explained in more details in the article introducing the

framework (de Villemereuil et al., 2016). We will here just have an overview of the computations

involved, as they are needed to understand what the package is doing.

Exactly knowing how to compute the parameters is, of course, QGglmm’s business. It will

start computation with the correct functions given the distribution name it has been given (see

the practice in the following section). Interpreting the output of QGglmm however is up to

the user, and having an idea of what happens behind the scene of a package is always the best

strategy for a correct interpretation.

3.1 Computing the phenotypic mean and variance

The first parameters to compute are the population phenotypic mean and variance on the

observed data scales.

Population mean The last layer, going from Eq. 4b to Eq. 4c just adds noise around some

expected values (computed as 𝑔−1(ℓ)). Hence, the population mean is the average of these

expected values:

𝑧 =

∫
𝑔−1(ℓ) 𝑓N (ℓ, 𝜇,𝑉P,ℓ)dℓ, (6)

where 𝑓N (ℓ, 𝜇,𝑉P,ℓ) is the probability density of a Normal distribution with mean 𝜇 and variance

𝑉P,ℓ evaluated at ℓ. Note that 𝑉P,ℓ is the sum of all variance components (i.e. 𝑉A,ℓ , 𝑉O,ℓ and

random effect variances) on the latent scale. In other words, it is the “phenotypic variance” of

the latent trait.

Variance on the expected data scale The variance on the expected data scale is simply the

variance of the above-mentioned expected values around the population mean:

𝑉P,exp =

∫ (
𝑔−1(ℓ) − 𝑧

)2
𝑓N (ℓ, 𝜇,𝑉P,ℓ)dℓ . (7)

Variance on the observed data scale To compute the variance of the observed data scale,

we need to the noise arising when going from Eq. 4b to Eq. 4c. We call this variance the

“distribution variance” and it depends on a variance function 𝑣 (ℓ, 𝜽 ) that describe the variance
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of the distribution D used7:

𝑉dist =

∫
𝑣 (ℓ, 𝜽 ) 𝑓N (ℓ, 𝜇,𝑉P,ℓ)dℓ . (8)

To compute the phenotypic variance on the observed data scale, we simply need to add Eqs. 7

and 8:

𝑉P,obs =𝑉P,exp +𝑉dist. (9)

We mentioned earlier that GLMM were quite noisy models. We can see here why: on the

observed data scale, we have variance arising from the latent scale that went through the link

function (𝑉P,exp) to which we further add the distribution variance (𝑉dist).

3.2 Computing the additive genetic variance and related

parameters

To compute the additive genetic variance on the observed data scale 𝑉A,obs from the latent

scale, two things are needed: the latent additive genetic variance 𝑉A,ℓ and a parameter called

Ψ8. The details of Ψ computation can be omitted here, but what is important to note is that,

as all computations above, it depends on the whole distribution of the latent trait ℓ. 𝑉A,obs can

then be computed as:

𝑉A,obs = Ψ2𝑉A,ℓ (10)

Simple enough (if you have Ψ!).

Once the value for 𝑉A,obs and all the other parameters have been obtained, it is pretty

straightforward to compute other related parameters on the observed data scale, such as the

heritability:

ℎ2
obs =

𝑉A,obs

𝑉P,obs
, (11)

or the coefficient of variation:

CVA,obs = 100
√︁
𝑉A,obs

𝑧
, (12)

or even the closely-related evolvability:

IA,obs =
𝑉A,obs

𝑧2 . (13)

7For a Binomial distribution, for example, it is equal to 𝑔−1 (ℓ)
(
1 − 𝑔−1 (ℓ)

)
, similar to the classical 𝑝 (1 − 𝑝).

8This parameter can be considered as the slope of the linear regression from the latent breeding values to the
breeding values on the observed data scale. For more details, see de Villemereuil et al. (2016)
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3.3 The issue of fixed effects

Fixed-effects can be messy in GLMMs because of the non-linearity introduced by the link

function. Indeed, when fixed-effects are introduced in the model9, they tend to have a strong

effect on the shape of the latent trait distribution. Yet, you might remember that all computations

describe in Eqs. 6–10 depends ultimately on the whole distribution of the latent trait.

The immediate consequence of this is that include fixed effects will have a noticeable and

possibly large impact on the estimates on the observed data scale. To account for that, it

is necessary to average over fixed-effects (see de Villemereuil et al., 2016, for more details).

QGglmm is able to do that and we will see how in the practice. However, it should be noted

that averaging over fixed-effects can be computationally demanding, especially for large datasets,

because the computation time grows roughly linearly with the sample size (i.e. computations

needs to be done for each data point). See section 5.1 for more information about this.

4 Using QGglmm

4.1 Extracting information from the models

As explained at the beginning of this document, QGglmm does not perform any kind of

inference directly from the data. Instead, estimates from the latent scale (e.g. intercept, total

variance and additive genetic variance) are its input. This means that the package will usually

be used after some analysis using a GLMM-based software has been conducted.

It is thus up to the user to extract these estimates from the software output and provide

them to QGglmm. No automatic extraction of these estimates directly from model objects is

available. This is mainly for two reasons:

� There are a very large diversity of GLMM-based software out there, which makes difficult

the task to implement an automatic extraction for all of them,

� But most importantly, every statistical design is unique, and automatic extractions can

only very roughly account for them. What if the user wants to discard some random effect

variance from the total variance? Which variance component is the additive genetic one

(e.g. for sire/dam models)? Etc...

As an illustration, we will however see how to extract estimate values from different but simple

models using MCMCglmm and lme4.

9Others than the bare intercept 𝜇, which, for the sake of simplicity, we do not include in what we call
“fixed-effects” here.
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Animal model with MCMCglmm Imagine we have an animal model fitted with MCMCglmm

to analyse count data using a Poisson distribution. The model would be fitted using, for example,

the following command:

model <- MCMCglmm(phen ~ 1, random = ~animal,

pedigree = pedigree, data = data,

prior = prior, family = "poisson")

Now, all we need is to extract, from the model object, the latent population mean (here, the

intercept of the model), additive genetic variance and phenotypic variance:

mu <- mean(model[["Sol"]][ , "(Intercept)"])

va <- mean(model[["VCV"]][ , "animal"])

vp <- mean(rowSums(model[["VCV"]]))

And that’s everything that will be needed by QGglmm. For binary traits, it is not needed to

add 1 (for probit link) or 𝜋2/3 (for logit link)

Multivariate animal model with MCMCglmm Now, what if we wanted to fit a multivariate

animal model rather than a univariate one? Something like this:

model <- MCMCglmm(cbind(phen1, phen2) ~ trait - 1,

random = ~ us(trait):animal,

rcov = ~us(trait):units,

data = data, pedigree = pedigree,

family = c("ordinal", "gaussian"),

prior = prior)

Extracting the parameters from the model object is a bit more tedious here, because most of

them are actually matrices and need to be re-formatted as such:

mu <- c(mean(model[["Sol"]][ , "traitphen1"]),

mean(model[["Sol"]][ , "traitphen2"]))

G <-

matrix(c(mean(model[["VCV"]][ , "traitphen1:traitphen1.animal"]),

mean(model[["VCV"]][ , "traitphen1:traitphen2.animal"]),

mean(model[["VCV"]][ , "traitphen1:traitphen2.animal"]),

mean(model[["VCV"]][ , "traitphen2:traitphen2.animal"])),

ncol = 2)

R <-

matrix(c(mean(model[["VCV"]][ , "traitphen1:traitphen1.units"]),

mean(model[["VCV"]][ , "traitphen1:traitphen2.units"]),

mean(model[["VCV"]][ , "traitphen1:traitphen2.units"]),

mean(model[["VCV"]][ , "traitphen2:traitphen2.units"])),

ncol = 2)

P <- G + R

12



Note that contrary to the command lines on the previous paragraph, those lines are quite specific

to the model used: they use the name of the phenotypic variables (phen1 and phen2) and the

last command assumes that no random effect was included in the model. Should there be more

random effects, their variance-covariance matrix of course need to be added up to obtain the

phenotypic variance-covariance matrix P.

Sire/dam model with lme4 Imagine now we have a sire/dam model fitted with lme4 to

analyse binary data10. The model would be fitted using, for example, the following command:

model <- glmer(phen ~ 1 + (1|sire) + (1|dam),

data = data, family = binomial(link = "probit"))

What we would like is to extract the intercept and variance components from the model object.

This can be done using the following commands:

vars <- as.data.frame(VarCorr(model))[ , c('grp', 'vcov')]

intercept <- fixef(model)['(Intercept)']

Now, all is needed left is to construct the actual parameters of interest. The latent population

mean is quite straightforward:

mu <- intercept

The additive genetic variance of the model is four times the sire variance and the latent

phenotypic variance on the latent scale is simply the sum of the variance components:

va <- 4 * vars[vars[["grp"]] == "sire", "vcov"]

vp <- sum(vars[, "vcov"])

And just like that, we have everything required to use QGglmm!

4.2 Using QGparams to obtain parameters on the observed

data scale

Getting some parameters to play with Let’s assume we performed an analysis using any kind

of GLMM software on a count trait. From this analysis, we obtain the following parameters:

va <- 1.34

vp <- 2.13

mu <- 0.89

10Note that the model used here belongs to an analysis assuming that “dam effect” contains maternal effects
but “sire effect” doesn’t contain paternal effects.
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Running QGparams (the easy way) We can use these parameters and our knowledge of the

model (here a Poisson model with a log link) to compute the quantitative genetics parameters

on the observed data scale using the simple following command:

QGparams(mu = mu, var.a = va, var.p = vp, model = "Poisson.log")

[1] "Using the closed forms for a Poisson-log model."

mean.obs var.obs var.a.obs h2.obs

1 4.116486 35.59524 9.150549 0.2570723

From this output, we can see different parameters on the observed phenotypic trait, i.e. the

count number:

� The population mean mean.obs of roughly of 4.1, meaning this is the average expected

count number in the population.

� The variance var.obs is the total phenotypic variance of the count number in the popula-

tion. It’s large value (35.6) is quite typical for a Poisson/log distributed trait.

� The variance var.a.obs is the additive genetic variance of the count data.

� The parameter h2.obs is the ratio between var.a.obs and var.obs, i.e. the heritability

of the count number.

If we compare the value of the latent heritability:

va/vp

0.5142857

with the value of the heritability on the observed data scale (here 0.26), we can see that they

differ greatly, and that the latter is smaller than the former. Though the absolute difference can

vary depending on the data and model, h2.obs is always expected to be smaller than the latent

heritability. This is due to the added “noise” in GLMM models (see section 2.4).

Because the Poisson/log model has a closed-form solution to our framework, the computation

is very quick. Some common models (e.g. binomial with logit link) do not have such solution

(yet?) and for them computation is slower. You can see whether QGparams is using the closed

forms through its verbose output:

QGparams(mu = mu, var.a = va, var.p = vp,

model = "Poisson.log", closed.form = FALSE)
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Table 1: Name, description and characteristics of the models implemented in QGglmm.

Name Description
Closed
form?

Extra param-
eter

Comment

Gaussian Gaussian distribution with identity link ✓ — Essentially: LMM
binom1.probit Binomial with 1 trial and probit link ✓ — For binary trait

binomN.probit Binomial with N trials and probit link ✓ n.obs
n.obs is the number of
trials

binom1.logit Binomial with 1 trial and logit link ✗ — For binary trait

binomN.logit Binomial with N trials and logit link ✗ n.obs
n.obs is the number of
trials

Poisson.log Poisson distribution wiht a log link ✓ — —

Poisson.sqrt
Poisson distribution with a square-root
link

✓ — —

negbin.log
Negative-Binomial distribution wiht a
log link

✓ theta
theta is the overdisper-
sion parameter

negbin.sqrt
Negative-Binomial distribution wiht a
square-root link

✓ theta
theta is the overdisper-
sion parameter

ordinal
Multiple threshold model for ordinal
traits

✓ — See section 5.4.

[1] "Computing observed mean..."

[1] "Computing variances..."

[1] "Computing Psi..."

mean.obs var.obs var.a.obs h2.obs

1 4.116486 35.59524 9.150549 0.2570723

Note the longer and more verbose output than latter. Here, QGparams takes time (not MUCH

more, but still more) to compute integrals for the mean, then variances, then Psi...

A last thing to note is the format of the output: QGparams yields one row of a data.frame,

this will become handy in section 5.3 on posterior distribution, because those rows are easily

stackable.

List of available models There are quite a bunch of models that are implemented in QGglmm,

for which we have coded all the functions needed for computation and the closed forms when

available. When available, QGparams defaults to using the closed forms (as can be seen in

the above paragraph). The table 1 lists all the currently available models and some of their

characteristics.

Running QGglmm (the custom way) What should be done if the model you used is not in

this list? Well, that means that using QGglmm is still possible but will require somewhat more

efforts from your part. Of course, if you don’t need to implement your own model, you can skip

this rather technical part11. Three things are needed:

11Though I would recommend readers to read it, as it explains how QGparams works “under the hood”.
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inv.link The inverse function of the link function your model, i.e. if you model uses a link

function 𝑔, you need to impute 𝑔−1.

var.func The “variance function” 𝑣 (ℓ, 𝜽 ) (see Eq. 8), which is the function giving the variance

to expect around a value for the latent trait ℓ given some (possibly empty!) parameter 𝜽 ,

assuming your custom distribution D.

d.inv.link Derivative of the inverse-link function inv.link, this should require little mathe-

matical work since link functions are often relatively simple.

To illustrate how to compute and use those things, we will “manually” implement the bino-

mial/logit model. So, the first thing is to know what the link function looks like. Wikipedia

tells us that a logit function looks like this:

𝑔(𝑥) = log
( 𝑥

1 − 𝑥

)
(14)

The inverse of this function is so that:

𝑔(𝑔−1(𝑥)) = 𝑥 = log
(
𝑔−1(𝑥)

1 − 𝑔−1(𝑥)

)
(15)

A tiny bit of mathematical work gives:

𝑔−1(𝑥) = exp(𝑥)
1 + exp(𝑥) (16)

This, is our inv.link function:

inv.link <- function(x){exp(x)/(1+exp(x))}

Derivating this function is quite easy and gives:

d𝑔−1(𝑥)
d𝑥

=
exp(𝑥)

(1 + exp(𝑥))2 (17)

So, d.inv.link is:

d.inv.link <- function(x){exp(x)/((1+exp(x))^2)}

Now, the last bit requires more thinking. The function 𝑣 (𝑥, 𝜽 ) gives us the variance of the values
on the observed data scale for a given latent value 𝑥 . So, for a given latent value 𝑥 , Eq. 4 tells

that the distribution of the values will be:

𝑧 |𝑥 ∼ B(𝑔−1(𝑥), 1) (18)

where B(𝑝, 𝑁 ) is the binomial distribution with probability of success 𝑝 and number of trials

𝑁 (here 𝑁 = 1 is our general parameter 𝜽). We know that the variance of this distribution is
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generally 𝑁𝑝 (1 − 𝑝), so in our case:

𝑣 (𝑥, 𝜽 ) = 𝑔−1(𝑥) (1 − 𝑔−1(𝑥)) (19)

So, we finally have var.func:

var.func <- function(x){(exp(x)/(1+exp(x))) *

(1 - (exp(x)/(1+exp(x))))}

QGglmm requires that these functions are provided using a named list:

custom.functions <- list(inv.link = inv.link,

var.func = var.func,

d.inv.link = d.inv.link)

Now, we can use our “custom”model in QGparams:

QGparams(mu = 0.5, var.a = 0.5, var.p = 1,

custom.model = custom.functions)

[1] "Computing observed mean..."

[1] "Computing variances..."

[1] "Computing Psi..."

mean.obs var.obs var.a.obs h2.obs

1 0.6020271 0.2395905 0.0197978 0.08263184

which gives exactly the same output as the built-in model:

QGparams(mu = 0.5, var.a = 0.5, var.p = 1, model = "binom1.logit")

[1] "Computing observed mean..."

[1] "Computing variances..."

[1] "Computing Psi..."

mean.obs var.obs var.a.obs h2.obs

1 0.6020271 0.2395905 0.0197978 0.08263184

Surprisingly, QGglmm does not need to know exactly which distribution you are using, and

the only part where the distribution D (and actually, solely its variance) is used is for the

computation of var.func.

4.3 Using QGmvparams to obtain multivariate parameters

on the observed data scale

Getting some parameters to play with Let’s assume we just performed a large multivariate

quantitative genetics analysis with 3 traits, among which a binary trait (binomial/probit), a

Gaussian trait and a count trait (Poisson/log). We obtained the following parameters:
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G <- matrix(c(0.5, 0.4, 0, 0.4, 2, 0, 0, 0, 0.1), nrow = 3)

P <- matrix(c(1, 0.4, 0, 0.4, 5, 0, 0, 0, 0.5), nrow = 3)

mu <- c(-0.5, 10, 1)

By looking at G, we can that the two first traits are genetically correlated, but the last one is

independent from the others (on the latent scale!):

G

[, 1] [, 2] [, 3]

[1, ] 0.5 0.4 0.0

[2, ] 0.4 2.0 0.0

[3, ] 0.0 0.0 0.1

All the phenotypic covariance is of phenotypic origin though:

P - G

[, 1] [, 2] [, 3]

[1, ] 0.5 0 0.0

[2, ] 0.0 3 0.0

[3, ] 0.0 0 0.4

If only real estimates could be that clean!

Running QGmvparams The function QGmvparams behave mostly the same as QGparams, but

has a modified arguments and output to adapt to the multivariate case. For example, it requires

not simply variances, but variance-covariance matrices and a vector of intercept for mu. It also

requires that all the models used for the trait are given (as a vector):

QGmvparams(mu = mu, vcv.G = G, vcv.P = P,

model = c("binom1.probit", "Gaussian", "Poisson.log"))

[1] "Computing observed mean..."

[1] "Computing variance-covariance matrix..."

[1] "Computing Psi..."

$mean.obs

[1] 0.361887 10.000149 3.490865

$vcv.P.obs

[, 1] [, 2] [, 3]

[1, ] 0.2308944225 0.1056209 -0.0002702066

[2, ] 0.1056208909 5.2382325 0.0577576973

[3, ] -0.0002702066 0.0577577 11.3775643645

$vcv.G.obs
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[, 1] [, 2] [, 3]

[1, ] 0.03511883 0.1063377 0.000000

[2, ] 0.10633770 2.0124007 0.000000

[3, ] 0.00000000 0.0000000 1.225777

A few things ought to be noted here regarding this output. First, you can see that the output

has substantially changed. It is not a data.frame any more, but a list object. Not as easily

stackable as data.frame, but much more convenient to store matrices! Second, despite the

fact that all models used here have a closed form (see Table 1), QGmvparams seems to be doing

the integral computation (see the verbose output on the three first lines). This is because the

computation for each model are not independent, so using closed forms would require to solve

this particular case (binomial/probit + Gaussian + Poisson/log). This is much more complex

than univariate models and there are so many possibilities that using closed forms for the

multivariate is practically impossible. Hence QGmvparams always resort to integral computations

(using the cubature package)12.

Looking closer at the estimates This example is interesting because it allows to see some of

the peculiar stuff happening when converting from the latent to the observed data scale. Let’s

save the output of QGmvparams to study it further:

out <- QGmvparams(mu = mu, vcv.G = G, vcv.P = P,

model = c("binom1.probit", "Gaussian", "Poisson.log"))

One interesting thing is to compare the additive genetic variance on the latent scale and on the

observed data scale:

G

out[["vcv.G.obs"]]

[, 1] [, 2] [, 3]

[1, ] 0.5 0.4 0.0

[2, ] 0.4 2.0 0.0

[3, ] 0.0 0.0 0.1

[, 1] [, 2] [, 3]

[1, ] 0.03511883 0.1063377 0.000000

[2, ] 0.10633770 2.0124007 0.000000

[3, ] 0.00000000 0.0000000 1.225777

12In previous versions, QGglmm was using R2Cuba which has been deprecated. The switch to cubature,
however, allowed for using its “vectorised” approach which considerably improved the speed of the package: up
to 50x for QGmvparams and up to x300 faster for QGmvicc!!

19

https://cran.r-project.org/web/packages/cubature/index.html


You can see that some of the structure was kept during the transformation. For example, the

last trait is still genetically independent from the others. The estimates regarding the Gaussian

haven’t changed much (this is because the Gaussian trait is not really “transformed”, it is pretty

much kept the same). Yet, the variances of the non-Gaussian traits changed: the first one was

reduced, while the third one was increased.

The changes about the non-genetic part are more striking:

P

out[["vcv.P.obs"]]

[, 1] [, 2] [, 3]

[1, ] 0.5 0 0.0

[2, ] 0.0 3 0.0

[3, ] 0.0 0 0.4

[, 1] [, 2] [, 3]

[1, ] 0.1957755888 -0.0007168094 -0.0002702066

[2, ] -0.0007168094 3.2258318034 0.0577576973

[3, ] -0.0002702066 0.0577576973 10.1517870576

whereas the variance-covariance of the non-genetic part on the latent scale is completely diagonal,

this is not the case any more on the observed data scale: the second and third traits now slightly

covariate whereas they were independent on the latent and are not even genetically correlated.

This happens because of the non-linearity of the link functions (again!) which can generate a

slight covariance between traits, even if they are not correlated on the latent scale.

4.4 Using QGpredict to obtain evolutionary prediction

Why use QGpredict? Obtaining heritability estimates on the observed data scale is interesting

because it allows to infer how of the variance of the actual phenotypic trait is of additive genetic

origin. Yet, contrary to what happens for Gaussian traits, heritability of non-Gaussian traits is

a poor predictor of the evolutionary response to selection (de Villemereuil et al., 2016). This is

where QGpredict is useful: using fitness information on the observed data scale, it allows to

infer evolutionary predictions on the latent scale.

How does it work? The starting point of the approach is to have fitness information for each

phenotypic category (non-Gaussian traits are most often categorical traits: dichotomies, counts,

ordinal traits, etc...), or a fitness model which allows to compute the expected fitness given a

latent value ℓ:

𝑊exp(ℓ) =
∑︁
𝑘

𝑊𝑃 (𝑘)𝑃 (𝑍 = 𝑘 |ℓ), (20)
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The LHS term is the sum fitness value for each possible category 𝑘, weighted by the probability

of this category given a latent value ℓ. Let’s use a tangible example: imagine that in a population

of bird composed of dispersers and non-dispersers, we are interested in the evolution of dispersal.

We measure a fitness value (say life-time reproductive success, LRS) for each category of

birds: dispersers have a LRS of 2.5 and non-dispersers have a LRS of 2. Now, if we assume a

binomial/probit model, we also know that the probability of “success” (here, say, of being a

disperser) given a latent value ℓ is 𝑔−1(ℓ) so:

𝑊exp(ℓ) = 2.5𝑔−1(ℓ) + 2
(
1 − 𝑔−1(ℓ)

)
(21)

We will use this function to “translate” selection on the observed data scale (i.e. the actual

phenotype) to the latent scale (i.e. a hypothetical, but nicely behave phenotype).

To compute the selection gradient, we also need the derivative of the function in Eq. 20, which

in our case is:
d𝑊exp(ℓ)

dℓ
= 2.5

d𝑔−1(ℓ)
dℓ

− 2
d𝑔−1(ℓ)

dℓ
(22)

We will soon seen that this derivative is easy to implement in R for this particular case. This

derivative is used by QGpred to obtain the predicted shift in the latent intercept 𝜇 due to

selection:

Δ𝜇 =𝑉𝐴𝐸

[
d𝑊exp

dℓ

]
1
�̄�
. (23)

Running QGpred To illustrate how to run QGpred, we will re-use the example above, with the

following estimates from a GLMM binomial/probit analysis:

va <- 0.93

vp <- 1.76

mu <- -0.5

The inverse of the probit link happens to be the CDF of a Normal distribution, so in R, Eq. 21

is actually quite easy to write:

fit <- function(x){2.5 * pnorm(x) + 2 * (1 - pnorm(x))}

The derivative of a CDF of a distribution is its PDF, so writing Eq. 22 is quite easy in R:

d.fit <- function(x){2.5 * dnorm(x) - 2 * dnorm(x)}

Now, we have everything we need to run QGpred13:

QGpred(mu = mu, var.a = va, var.p = vp,

fit.func = fit, d.fit.func = d.fit)

13One might be surprised that the model (distribution + link function) assumed is not required as an argument
by QGpred. In fact, all the information about the model is already accounted for when we wrote fit and d.fit,
nothing else about the distribution is needed.
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[1] "Computing mean fitness..."

[1] "Computing the latent selection and response..."

mean.lat.fit lat.grad lat.sel lat.resp

1 2.19086 0.05237713 0.09218375 0.04871073

The function yields different information: mean.lat.fit is the mean latent fitness (�̄� in Eq. 23),

lat.grad is the latent gradient of selection (𝐸
[
d𝑊exp

dℓ

]
1
�̄�
), lat.sel is the latent shift in the

selected population and lat.resp is the latent response to selection, i.e. the latent shift in the

next population.

Obtaining the response to selection on the observed data scale from there is quite straightforward

using the function QGmean provided by the package14:

delta.mu <- QGpred(mu = mu, var.a = va, var.p = vp,

fit.func = fit, d.fit.func = d.fit)[["lat.resp"]]

QGmean(mu = mu, var = vp,

link.inv = QGlink.funcs("binom1.probit")[["inv.link"]])

QGmean(mu = mu+delta.mu, var = vp,

link.inv = QGlink.funcs("binom1.probit")[["inv.link"]])

0.3817207

0.3929478

So, despite quite a strong selection (dispersers have 25% more offspring in their life-time than

non-dispersers), we expect the proportion of dispersers to only increase of roughly 3% from this

generation to the next.

5 Particular cases

5.1 Including fixed effects

Case study Imagine the phenotypic trait you are studying is the juvenile survival to a common

disease. You suspect there is genetic component to it, but at the same time, you know that

survival varies at look according to the nutrient intake provided by the parents, which you have

a way to measure quite precisely. One way to analyse these data is to include the nutrient intake

as a fixed effect in the model, while inferring the additive genetic variance of the survival to the

disease. Yet, as stated in section 2.4, including fixed effects in GLMM has strong consequences

on the inference of quantitative genetics parameters on the observed data scale. Fortunately,

QGglmm has a way to deal with fixed effects by averaging over them: this allows to produce

meaningful parameters on the observed data scale.

14The QGmean fu
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Getting the predicted values Using the example above, we ran an animal model in MCM-

Cglmm like this:

model <- MCMCglmm(phen ~ nutr, random = ~animal,

pedigree = pedigree, data = data,

prior = prior, family = "ordinal")

where nutr is the nutrient intake fixed effect. To account for fixed effects in QGparams, we need

the marginal predicted values of the model. What this means is that predicted values must be

computed using only the fixed-effect part of the model, not the random part (e.g. not including

the breeding values!). Most implementation of predict in R defaults to marginal prediction,

and at least predict.MCMCglmm does, in our case. What we also need is for predictions to be

computed on the latent scale, not on the observed/expected data scale. Here, the default for

predict.MCMCglmm does not suit us and we need to custom it a bit:

yhat <- predict(model, type = "terms")

The argument type = "terms" tells predict.MCMCglmm to compute predictions on the latent

scale. This is, of course, just an example: depending on the software you are using, getting the

predicted values might be totally different. The important thing is to check they are marginally

computed and on the latent scale.

Running QGparams with fixed effects Once these values are obtained, running QGparams is

pretty straightforward:

va <- mean(model[["VCV"]][, "animal"])

vp <- mean(rowSums(model[["VCV"]]))

QGparams(predict = yhat, var.a = va, var.p = vp,

model = "binom1.probit")

[1] "Using the closed forms for a Binomial1-probit model."

mean.obs var.obs var.a.obs h2.obs

1 0.2896591 0.2057567 0.04275686 0.207803

Note that mu being already accounted for in predict, it is not necessary any more15. The

difference with the output, shouldn’t we have used the predict argument is quite striking:

mu <- mean(model[["Sol"]][, "(Intercept)"])

QGparams(mu = mu, var.a = va, var.p = vp, model = "binom1.probit")

[1] "Using the closed forms for a Binomial1-probit model."

mean.obs var.obs var.a.obs h2.obs

1 0.6582622 0.2249531 0.06650048 0.2956193

Admittedly, the example here was forged so that these outputs were different, but it is certainly

not an unlikely one!

15Actually, when using predict, the function makes sure that mu is not used at all, even it is passed as an
argument!
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5.2 Obtaining intra-class correlation (ICC) coefficients

What are intra-class correlation coefficients? Intra-class correlation (ICC) measure how

much of the data belonging to a given class (e.g. individual, maternal identity, environment,

etc.) resemble each other. In other words, it measures how much we can predict the look of the

data, simply by knowing to which class it belongs. In LMM, formally, ICC are simply the ratio

of the variance of the focus component (individuals in the case of repeatability) to the total

phenotypic variance. One famous ICC example is the repeatability. It is computed as the ratio

of the variance of individual effect (say, 𝑉I) to the phenotypic variance :

𝑟 2 =
𝑉I

𝑉P
, (24)

and quantify how consecutive measurements from the same individual are similar to each other.

As yet another example, the heritability can be considered as an ICC measuring how much we

can predict the phenotype, using e.g. relatedness data.

What about GLMM? As always, the situation is more complex in GLMM. First, computing

the variance component on the observed data scale (i.e. for the actual phenotype) is even

more complex that computing the additive genetic variance on this scale (de Villemereuil et al.,

2016). Second, the link between heritability and ICC is blurred. Narrow-sense heritability on

the observed data scale can no longer be considered an ICC. Broad-sense heritability can be

computed as an ICC on that level, but it contains some non-additive genetic variance.

Case study Let’s say we have multiple individual measurement of a count data set and

performed a Poisson/log GLMM using “individual” as a random effect beside the additive genetic

one. We obtained the following estimates:

mu <- 1

vi <- 0.5 #Individual-effect variance

va <- 0.3 #Additive genetic variance

vp <- 1

Now, what we would like to know is, how are measures repeatable on the observed scale? To do

so, we will use the function QGicc.

Running QGicc Running QGicc is very similar to running QGparams:

QGicc(mu = mu, var.comp = vi + va, var.p = vp, model = "Poisson.log")

[1] "Using the closed forms for a Poisson-log model."

mean.obs var.obs var.comp.obs icc.obs

1 4.481689 38.9943 24.61565 0.6312627
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Just as QGparams, QGicc returns the population mean and phenotypic variance that helps to

put estimates in context. The parameter var.comp.obs is the component variance (here the

individual-effect variance) on the observed data scale and icc.obs is the ratio of this variance

component to the phenotypic variance on the observed data scale.

Some characteristics and other features As said above, computing variance component on

the observed data scale is a bit complex. In general, it requires the use of a double integrate,

which can sometimes take times. Closed forms are available only for Poisson/log and Negative-

Binomial/log models. Binomial/probit models uses a semi-closed form, meaning that a close-form

is known for one of the integral, but not the other, so the computation is much faster than we

using a double integral, but still slower than when using a fully closed-form. Basically, QGicc

has all the features QGparams has: fixed-effects can be accounted for using the predict function

and it has a multivariate counter-part QGmvicc which yields variance-covariance matrix on the

observed data scale. Note that this multivariate function, like QGmvparams never uses closed

forms. As a consequence, because of the double integration, it is the slowest function of the

package16!

Finally, note that the “ordinal” model cannot be used with QGicc due to its complexity and lack

of closed forms for ICC.

5.3 Integrating over a posterior prediction

Why integrate over a posterior distribution? When using a Bayesian implementation of a

GLMM (e.g. MCMCglmm), we obtain posterior distributions, rather than point estimates for

the parameters on the latent scale. The nice thing about posterior distributions is that they

convey a very complex information and yet are quite easy to handle for further transformation of

the inference (especially with sampling algorithms such as MCMC). For example, the posterior

distribution of heritability is easily computed from a MCMCglmm output as:

h2.post <- model[["VCV"]][, "animal"] / rowSums(model[["VCV"]])

We can then study directly the shape of h2.post, e.g. to determine whether it is different from

0 or not.

Can this be done with QGparams? Absolutely. Recall that the output of QGparams is a row

of a data.frame, which are easily stackable. The only tricky part is to create a data.frame to

stock our model output, because it’s easier to deal with:

16Note that when QGglmm switched to cubature, the speed of this function was increased by more than x300,
meaning a computation of 25 minutes in the old version now takes... 4 seconds. If you were annoyed by its
slugginess, I encourage you to give it another try now!
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df <- data.frame(mu = as.vector(model[["Sol"]][, "(Intercept)"]),

va = as.vector(model[["VCV"]][, "animal"]),

vp = rowSums(model[["VCV"]]))

head(df)

mu va vp

1 0.7329956 1.715276 2.715276

2 0.7444525 1.783855 2.783855

3 0.7700467 1.707488 2.707488

4 0.6952074 1.728199 2.728199

5 0.4953782 2.012740 3.012740

6 0.4433023 1.448746 2.448746

Then, we use apply to go through this data.frame and “stack” our output as one data.frame

with do.call("rbind", ...):

post <- do.call("rbind", apply(df, 1, function(row){

QGparams(mu = row[["mu"]],

var.a = row[["va"]],

var.p = row[["vp"]],

model = "binom1.probit", verbose = FALSE)

}))

head(post)

mean.obs var.obs var.a.obs h2.obs

va 0.6481320 0.2280569 0.06358546 0.2788140

va1 0.6490326 0.2277893 0.06480902 0.2845130

va2 0.6553937 0.2258528 0.06246510 0.2765744

va3 0.6405957 0.2302328 0.06480583 0.2814795

va4 0.5976603 0.2404625 0.07509439 0.3122915

va5 0.5943345 0.2411010 0.06315448 0.2619420

Now, you have the posterior distribution of all the parameters on the observed data scale.

Can this be done with QGmvparams? Absolutely. But it does require a bit more work. The

best way to go about it17 is to create a large data.frame for which each element corresponds to

one iteration, and which will contain all latent parameters:

df <- cbind(mu1 = model[["Sol"]][, "traitphen1"],

mu2 = model[["Sol"]][, "traitphen2"],

model[["VCV"]])

Now, all we need to do is construct the matrix “on the fly” before calling QGmvparams:

17At least from the top of my head, but you can have your own –possibly better– strategy of course!
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post <- apply(df, 1, function(row) {

mu <- c(row["mu1"], row["mu2"])

G <- matrix(c(row["traitphen1:traitphen1.animal"],

row["traitphen1:traitphen2.animal"],

row["traitphen1:traitphen2.animal"],

row["traitphen2:traitphen2.animal"]),

ncol = 2)

R <- matrix(c(row["traitphen1:traitphen1.units"],

row["traitphen1:traitphen2.units"],

row["traitphen1:traitphen2.units"],

row["traitphen2:traitphen2.units"]),

ncol = 2)

P <- G + R

QGmvparams(mu = mu, vcv.G = G, vcv.P = P,

model = c("binom1.probit", "Gaussian"), verbose = FALSE)

})

Of course, all names (“phen1”, “phen2”, etc.) should be changed to fit your actual code, as

should your selection of models in QGmvparams.

5.4 The special case of ordinal data

What is an ordinal trait? An ordinal trait is a categorical trait for which the categories have

a meaningful order18. Think about, for example, a morphological trait categorised as “small”,

“intermediate” and “large” or a disease which could manifest a “asymptomatic”, “unwell” and

“severe”. It is pretty clear that these categories are ordered and what the order is (whether you

begin by small or large doesn’t really matter).

How are these traits studied? The most common mod el to study those traits in quantitative

genetics is called the multiple threshold model. In this model, a Gaussian variable (the “liability”)

is cut into separate parts by cut-points (or thresholds) corresponding to each categories (see

Fig. 5), e.g. defining their relative proportions. Because of unidentifiability issues, one of the

cut-points (or the intercept 𝜇) has to be arbitrarily set. Thus, most often, the first cut-point is

set to be 0 (see Fig. 5).

The GLMM specification In the GLMM realm, this model can be translated as a multio-

nial/probit model where the probit link is a bit peculiar: it is “sliced” according to the different

cut-points (hereafter 𝛾𝑖), corresponding to the multiple thresholds. As a consequence, the link

function outputs a vector containing the relative probability for each category, all of which sum

18Though binary traits are a special case of ordinal trait, they are excluded here for two reasons. First, they
are a very peculiar, degenerate kind of ordinal trait. Second, the core function of QGglmm can deal with them
as binomial traits much efficiently.
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Small Intermediate

Large

0
Figure 5: A schematic representation of the multiple threshold model using the example of the “small”,
“intermediate” and “large” categories. The area under the curve shows the relative proportions of each
category: here“small”would be the rarest one.

up to 1. This vector is then used to sample a (unique) value in a multinomial distribution:

ℓ = 𝜇 + Xb + Zaa + Z1u1 + ... + Z𝑘uk + o (25a)

𝒑𝑖 (ℓ) = Φ(𝛾𝑖 − ℓ) − Φ(𝛾𝑖−1 − ℓ) (25b)

𝒁 ∼ Multinom(𝒑1, ...,𝒑𝐾 ) (25c)

where Φ is a standard Normal CDF (inverse of the probit link) and 𝐾 the number of categories.

Note that the equations above suppose that there are two “extreme” cut-points −∞ and ∞.

Something important to note here is that 𝒁 is a matrix of 𝐾 rows and as many columns as there

are individuals. Each column has 1 for the expressed phenotypic category and 0 elsewhere. As a

consequence, despite the latent being univariate, the observed data scale is actually multivariate

and of dimension 𝐾 !

Case study Let’s assume you have a phenotypic trait with 3 categories (small, intermediate,

large). You want to study the quantitative genetics behind this trait and run a multinomial

GLMM for this19. You obtain the following parameters:

mu <- 1.5

va <- 0.5

vp <- 1

cp <- c(0, 2) # Estimated cut-points

An illustrative simulation To fully understand the model and what these parameters stand

for, let’s simulate a few data point according to them. First, let’s fix a few things:

19Note that the package MCMCglmm has both the “multinomial” and “ordinal” models. The former one
actually uses a logit link, which is not implemented in QGglmm (yet?), while the latter one corresponds to the
model described here.
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# Number of simulated individuals

N <- 10

# All cut-points including the infinite extremes

g <- c(-Inf, cp, Inf)

Now, we can proceed. The latent values are pretty straightforward, as always:

l <- mu + rnorm(N, 0, sqrt(va)) + rnorm(N, 0, sqrt(vp-va))

l

[1] 1.3991485 1.4866290 1.7736644 0.9845936 1.3013626 1.5379076 3.4074896

[8] 0.7511216 0.4951887 3.3479212

As we can see, l is just a vector containing 10 values (one for each simulated individual). Now,

the complicated part is to use the “sliced” probit:

p = matrix(0, ncol = N, nrow = 3)

for (i in 1:3) {

p[i, ] = pnorm(g[i + 1] - l) - pnorm(g[i] - l)

}

p

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6]

[1, ] 0.08088423 0.06855641 0.03805934 0.1624119 0.09656718 0.0620356

[2, ] 0.64514632 0.62759767 0.55147046 0.6826321 0.66104348 0.6159569

[3, ] 0.27396945 0.30384592 0.41047020 0.1549561 0.24238933 0.3220075

[, 7] [, 8] [, 9] [, 10]

[1, ] 0.000327817 0.2262897 0.3102334 0.0004071008

[2, ] 0.079313308 0.6678555 0.6235802 0.0884347631

[3, ] 0.920358875 0.1058548 0.0661863 0.9111581361

We can see that for each of the ten individuals, we obtain the probabilities to belong to each of

the category (first row is small, etc.). We can also see the relationship between the latent values

l and the probabilities in p. For example, the 7th and 10th values in l are quite large:

l[c(7, 10)]

[1] 3.407490 3.347921

leading to very strong probabilities to belong to the last category:

p[, c(7, 10)]

[, 1] [, 2]

[1, ] 0.000327817 0.0004071008

[2, ] 0.079313308 0.0884347631

[3, ] 0.920358875 0.9111581361
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Finally, we can use the multinomial distribution to sample the actual phenotypic category of

the individuals given these probabilities:

z <- apply(p, 2, function(vec) {

vec <- as.vector(vec)

rmultinom(1, size = 1, prob = vec)

})

z

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10]

[1, ] 0 0 0 0 0 0 0 0 0 0

[2, ] 0 0 0 1 1 0 0 1 1 0

[3, ] 1 1 1 0 0 1 1 0 0 1

Individuals with 1 on row 1 (here none) have a phenotype “small”, those with 1 on row 2 have a

phenotype “intermediate” and those with 1 on row 3 have a phenotype “large”.

Running QGparams for ordinal traits Running QGparams for ordinal is actually quite easy,

yet the output can be surprising:

out <- QGparams(mu = mu, var.a = va, var.p = vp,

model = "ordinal", cut.points = c(-Inf, cp, Inf))

out

$mean.obs

[1] 0.1444222 0.4937410 0.3618368

$vcv.P.obs

[, 1] [, 2] [, 3]

[1, ] 0.12356442 -0.07130715 -0.05225726

[2, ] -0.07130715 0.24996083 -0.17865367

[3, ] -0.05225726 -0.17865367 0.23091093

$vcv.G.obs

[, 1] [, 2] [, 3]

[1, ] 0.012917511 0.008379864 -0.02129738

[2, ] 0.008379864 0.005436196 -0.01381606

[3, ] -0.021297376 -0.013816061 0.03511344

$h2.obs

[1] 0.10454071 0.02174819 0.15206485

Despite being a univariate analysis, the output is a multivariate one. It is a list, not a

data.frame and contains variance-covariance matrices and not variances. Also, it contains one

heritability estimate for each category. Importantly, the G-matrix on the observed data scale is

a 𝐾 × 𝐾 matrix, but has only one axis of variation:
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# Only 1 non-null eigen value

eigen(cov2cor(out[["vcv.G.obs"]]))[["values"]]

[1] 3.000000e+00 8.881784e-16 0.000000e+00
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